Suppr超能文献

潜伏状态的 Epstein-Barr 病毒的重新激活涉及病毒基因组上 CTCF 结合位点的 RNA 聚合酶活性增加。

Reactivation of Epstein-Barr Virus from Latency Involves Increased RNA Polymerase Activity at CTCF Binding Sites on the Viral Genome.

机构信息

Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.

Department of Pathobiology, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA.

出版信息

J Virol. 2023 Feb 28;97(2):e0189422. doi: 10.1128/jvi.01894-22. Epub 2023 Feb 6.

Abstract

The ability of Epstein-Barr virus (EBV) to switch between latent and lytic infection is key to its long-term persistence, yet the molecular mechanisms behind this switch remain unclear. To investigate transcriptional events during the latent-to-lytic switch, we utilized Precision nuclear Run On followed by deep Sequencing (PRO-Seq) to map cellular RNA polymerase (Pol) activity to single-nucleotide resolution on the host and EBV genome in three different models of EBV latency and reactivation. In latently infected Mutu-I Burkitt lymphoma (BL) cells, Pol activity was enriched at the Qp promoter, the EBER region, and the BHLF1/LF3 transcripts. Upon reactivation with phorbol ester and sodium butyrate, early-phase Pol activity occurred bidirectionally at CTCF sites within the LMP-2A, EBER-1, and RPMS1 loci. PRO-Seq analysis of Akata cells reactivated from latency with anti-IgG and a lymphoblastoid cell line (LCL) reactivated with small molecule C60 showed a similar pattern of early bidirectional transcription initiating around CTCF binding sites, although the specific CTCF sites and viral genes were different for each latency model. The functional importance of CTCF binding, transcription, and reactivation was confirmed using an EBV mutant lacking the LMP-2A CTCF binding site. This virus was unable to reactivate and had disrupted Pol activity at multiple CTCF binding sites relative to the wild-type (WT) virus. Overall, these data suggest that CTCF regulates the viral early transcripts during reactivation from latency. These activities likely help maintain the accessibility of the viral genome to initiate productive replication. The ability of EBV to switch between latent and lytic infection is key to its long-term persistence in memory B cells, and its ability to persist in proliferating cells is strongly linked to oncogenesis. During latency, most viral genes are epigenetically silenced, and the virus must overcome this repression to reactivate lytic replication. Reactivation occurs once the immediate early (IE) EBV lytic genes are expressed. However, the molecular mechanisms behind the switch from the latent transcriptional program to begin transcription of the IE genes remain unknown. In this study, we mapped RNA Pol positioning and activity during latency and reactivation. Unexpectedly, Pol activity accumulated at distinct regions characteristic of transcription initiation on the EBV genome previously shown to be associated with CTCF. We propose that CTCF binding at these regions retains Pol to maintain a stable latent chromosome conformation and a rapid response to various reactivation signals.

摘要

EBV 从潜伏感染切换到裂解感染的能力是其长期持续存在的关键,但其切换背后的分子机制仍不清楚。为了研究潜伏感染到裂解感染切换过程中的转录事件,我们利用精确核运行序列分析(PRO-Seq)以单核苷酸分辨率映射细胞 RNA 聚合酶(Pol)活性到宿主和 EBV 基因组上三种不同 EBV 潜伏和再激活模型中。在潜伏感染的 Mutu-I 伯基特淋巴瘤(BL)细胞中,Pol 活性在 Qp 启动子、EBER 区和 BHLF1/LF3 转录物上富集。用佛波醇酯和丁酸钠再激活后,早期 Pol 活性在 LMP-2A、EBER-1 和 RPMS1 基因座内的 CTCF 位点上双向发生。用抗 IgG 从潜伏感染中再激活的 Akata 细胞和用小分子 C60 从潜伏感染中再激活的淋巴母细胞系(LCL)的 PRO-Seq 分析显示,早期双向转录起始于 CTCF 结合位点附近的模式相似,尽管每种潜伏模型的特定 CTCF 位点和病毒基因不同。用缺乏 LMP-2A CTCF 结合位点的 EBV 突变体证实了 CTCF 结合、转录和再激活的功能重要性。与野生型(WT)病毒相比,这种病毒无法再激活,并且在多个 CTCF 结合位点处破坏了 Pol 活性。总体而言,这些数据表明 CTCF 调节潜伏感染再激活过程中的病毒早期转录物。这些活性可能有助于维持病毒基因组的可及性以启动有性复制。EBV 从潜伏感染切换到裂解感染的能力是其在记忆 B 细胞中长期存在的关键,其在增殖细胞中持续存在与致癌作用密切相关。在潜伏感染期间,大多数病毒基因被表观遗传沉默,病毒必须克服这种抑制作用才能重新激活裂解复制。一旦表达即刻早期(IE)EBV 裂解基因,就会发生再激活。然而,从潜伏转录程序切换到开始转录 IE 基因的分子机制仍不清楚。在这项研究中,我们绘制了潜伏和再激活期间的 RNA Pol 定位和活性。出乎意料的是,Pol 活性在先前显示与 CTCF 相关的 EBV 基因组上的特征转录起始区域聚集。我们提出 CTCF 结合在这些区域保留 Pol 以维持稳定的潜伏染色体构象,并对各种再激活信号做出快速反应。

相似文献

本文引用的文献

1
RNA polymerase II dynamics shape enhancer-promoter interactions.RNA 聚合酶 II 动力学塑造增强子-启动子相互作用。
Nat Genet. 2023 Aug;55(8):1370-1380. doi: 10.1038/s41588-023-01442-7. Epub 2023 Jul 10.
5
Timing RNA polymerase pausing with TV-PRO-seq.利用 TV-PRO-seq 技术检测 RNA 聚合酶暂停的时间。
Cell Rep Methods. 2021 Oct 25;1(6):None. doi: 10.1016/j.crmeth.2021.100083.
7
Enhancer-promoter interactions and transcription.增强子-启动子相互作用与转录
Nat Genet. 2020 May;52(5):470-471. doi: 10.1038/s41588-020-0620-7.
8
MYC Controls the Epstein-Barr Virus Lytic Switch.MYC 控制 Epstein-Barr 病毒裂解开关。
Mol Cell. 2020 May 21;78(4):653-669.e8. doi: 10.1016/j.molcel.2020.03.025. Epub 2020 Apr 20.
10
A promiscuous inflammasome sparks replication of a common tumor virus.一种杂乱的炎性小体引发常见肿瘤病毒的复制。
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1722-1730. doi: 10.1073/pnas.1919133117. Epub 2020 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验