文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

RNA 聚合酶 II 动力学塑造增强子-启动子相互作用。

RNA polymerase II dynamics shape enhancer-promoter interactions.

机构信息

Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.

Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA.

出版信息

Nat Genet. 2023 Aug;55(8):1370-1380. doi: 10.1038/s41588-023-01442-7. Epub 2023 Jul 10.


DOI:10.1038/s41588-023-01442-7
PMID:37430091
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10714922/
Abstract

How enhancers control target gene expression over long genomic distances remains an important unsolved problem. Here we investigated enhancer-promoter communication by integrating data from nucleosome-resolution genomic contact maps, nascent transcription and perturbations affecting either RNA polymerase II (Pol II) dynamics or the activity of thousands of candidate enhancers. Integration of new Micro-C experiments with published CRISPRi data demonstrated that enhancers spend more time in close proximity to their target promoters in functional enhancer-promoter pairs compared to nonfunctional pairs, which can be attributed in part to factors unrelated to genomic position. Manipulation of the transcription cycle demonstrated a key role for Pol II in enhancer-promoter interactions. Notably, promoter-proximal paused Pol II itself partially stabilized interactions. We propose an updated model in which elements of transcriptional dynamics shape the duration or frequency of interactions to facilitate enhancer-promoter communication.

摘要

增强子如何在长距离的基因组上控制靶基因的表达仍然是一个重要的未解决的问题。在这里,我们通过整合来自核小体分辨率基因组接触图谱、新生转录和影响 RNA 聚合酶 II(Pol II)动力学或数千个候选增强子活性的扰动的数据,研究了增强子-启动子之间的通讯。新的 Micro-C 实验与已发表的 CRISPRi 数据的整合表明,与非功能增强子-启动子对相比,功能增强子-启动子对中的增强子在更接近其靶启动子的位置花费更多时间,这部分归因于与基因组位置无关的因素。转录周期的操作表明 Pol II 在增强子-启动子相互作用中起着关键作用。值得注意的是,启动子近端暂停的 Pol II 本身部分稳定了相互作用。我们提出了一个更新的模型,其中转录动力学的元素形成了相互作用的持续时间或频率,以促进增强子-启动子通讯。

相似文献

[1]
RNA polymerase II dynamics shape enhancer-promoter interactions.

Nat Genet. 2023-8

[2]
Long distance relationships: enhancer-promoter communication and dynamic gene transcription.

Biochim Biophys Acta. 2012

[3]
Enhancer-promoter communication: hubs or loops?

Curr Opin Genet Dev. 2021-4

[4]
Dynamic enhancer-gene body contacts during transcription elongation.

Genes Dev. 2015-10-1

[5]
Large distances separate coregulated genes in living embryos.

Proc Natl Acad Sci U S A. 2019-7-8

[6]
RNA Targets Ribogenesis Factor WDR43 to Chromatin for Transcription and Pluripotency Control.

Mol Cell. 2019-5-22

[7]
Emerging roles of transcriptional enhancers in chromatin looping and promoter-proximal pausing of RNA polymerase II.

J Biol Chem. 2017-11-29

[8]
Regulation of alternative splicing by a transcriptional enhancer through RNA pol II elongation.

Proc Natl Acad Sci U S A. 2002-6-11

[9]
Cell type- and transcription-independent spatial proximity between enhancers and promoters.

Mol Biol Cell. 2024-7-1

[10]
Intragenic Enhancers Attenuate Host Gene Expression.

Mol Cell. 2017-10-5

引用本文的文献

[1]
G-quadruplexes as potential traps for superenhancer marker BRD4: ligand-sensitive binding and co-separation in vitro.

Nucleic Acids Res. 2025-7-19

[2]
Promoter strength and position govern promoter competition.

bioRxiv. 2025-5-7

[3]
Structural variants in the 3D genome as drivers of disease.

Nat Rev Genet. 2025-6-30

[4]
CREPT is required for the metastasis of triple-negative breast cancer through a co-operational-chromatin loop-based gene regulation.

Mol Cancer. 2025-6-10

[5]
DNA G-quadruplex structures act as functional elements in α- and β-globin enhancers.

Genome Biol. 2025-6-4

[6]
Revisiting models of enhancer-promoter communication in gene regulation.

Genome Res. 2025-6-2

[7]
Biological roles of enhancer RNA m6A modification and its implications in cancer.

Cell Commun Signal. 2025-5-30

[8]
Regulation of RNA polymerase II transcription through re-initiation and bursting.

Mol Cell. 2025-5-15

[9]
High-resolution CTCF footprinting reveals impact of chromatin state on cohesin extrusion.

Nat Commun. 2025-5-15

[10]
CTCF depletion decouples enhancer-mediated gene activation from chromatin hub formation.

Nat Struct Mol Biol. 2025-5-13

本文引用的文献

[1]
Cooltools: Enabling high-resolution Hi-C analysis in Python.

PLoS Comput Biol. 2024-5

[2]
The Mediator complex regulates enhancer-promoter interactions.

Nat Struct Mol Biol. 2023-7

[3]
Enhancer-promoter contact formation requires RNAPII and antagonizes loop extrusion.

Nat Genet. 2023-5

[4]
Deep-learning microscopy image reconstruction with quality control reveals second-scale rearrangements in RNA polymerase II clusters.

PNAS Nexus. 2022-5-23

[5]
Enhancer-promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1.

Nat Genet. 2022-12

[6]
RNA Pol II pausing facilitates phased pluripotency transitions by buffering transcription.

Genes Dev. 2022-8-18

[7]
Rapid and efficient degradation of endogenous proteins in vivo identifies stage-specific roles of RNA Pol II pausing in mammalian development.

Dev Cell. 2022-4-25

[8]
Nonlinear control of transcription through enhancer-promoter interactions.

Nature. 2022-4

[9]
Prediction of histone post-translational modification patterns based on nascent transcription data.

Nat Genet. 2022-3

[10]
Molecular architecture of enhancer-promoter interaction.

Curr Opin Cell Biol. 2022-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索