Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou730070, China.
J Phys Chem Lett. 2023 Feb 16;14(6):1512-1520. doi: 10.1021/acs.jpclett.2c03939. Epub 2023 Feb 6.
The great potential of artificial optoelectronic devices that are capable of mimicking biosynapse functions in brain-like neuromorphic computing applications has aroused extensive interest, and the architecture design is decisive yet challenging. Herein, a new architecture of p-type CuZnSnS@BiOBr nanosheets embedded in poly(methyl methacrylate) (PMMA) films (CZTS@BOB-PMMA) is presented acting as a switching layer, which not only shows the bipolar resistive switching features (SET/RESET voltages, ∼ -0.93/+1.35 V; retention, >10 s) and electrical- and near-infrared light-induced synapse plasticity but also demonstrates electrical-driven excitatory postsynaptic current, spiking-time-dependent plasticity, paired pulse facilitation, long-term plasticity, long- and short-term memory, and "learning-forgetting-learning" behaviors. The approach is a rewarding attempt to broaden the research of optoelectric controllable memristive devices for building neuromorphic architectures mimicking human brain functionalities.
具有模拟脑类神经形态计算应用中生物突触功能的人工光电设备具有巨大的潜力,其架构设计具有决定性意义但也极具挑战性。在此,提出了一种新型的 p 型 CuZnSnS@BiOBr 纳米片嵌入聚甲基丙烯酸甲酯(PMMA)薄膜(CZTS@BOB-PMMA)的结构作为开关层,其不仅表现出双极电阻开关特性(SET/RESET 电压,约为-0.93/+1.35 V;保持时间,>10 s)和电和近红外光诱导的突触可塑性,还表现出电驱动的兴奋性突触后电流、尖峰时间依赖性可塑性、成对脉冲易化、长时程可塑性、长短期记忆以及“学习-遗忘-学习”行为。该方法是拓宽光电可控忆阻器件研究以构建模拟人脑功能的神经形态架构的有益尝试。