Suppr超能文献

基于 1,4-二苯基丁二炔的人工突触,能量消耗为飞焦。

Artificial synapse based on 1,4-diphenylbutadiyne with femtojoule energy consumption.

机构信息

Henan Key Laboratory of Photovoltaic Materials, Center for Topological Functional Materials, Henan University, Kaifeng 475004, People's Republic of China.

出版信息

Phys Chem Chem Phys. 2023 Feb 15;25(7):5453-5458. doi: 10.1039/d2cp05417e.

Abstract

Memristors as electronic artificial synapses have attracted increasing attention in neuromorphic computing. Especially, organic small molecule artificial synapses show great promise for low-energy neuromorphic devices. In this study, the basic functions of biological synapses including paired-pulse facilitation/paired-pulse depression (PPF/PPD), spike rate-dependent plasticity (SRDP) and fast Bienenstock-Cooper-Munro learning rules (BCM) have been successfully simulated in the 1,4-diphenylbutadiyne (DPDA) memristor device. Furthermore, ultra-low energy consumption (∼25 fJ per spike), linear and large conductance changes have been obtained in the small molecule DPDA device. This work makes a great contribution to improve the accuracy, speed and to reduce the energy consumption for neuromorphic computing.

摘要

忆阻器作为电子人工突触在神经形态计算中受到了越来越多的关注。特别是,有机小分子人工突触为低能耗神经形态器件展示了巨大的应用前景。在这项研究中,生物突触的基本功能,包括成对脉冲易化/成对脉冲抑制(PPF/PPD)、尖峰率依赖性可塑性(SRDP)和快速 Bienenstock-Cooper-Munro 学习规则(BCM),已成功地在 1,4-二苯基丁二炔(DPDA)忆阻器器件中得到模拟。此外,在小分子 DPDA 器件中还获得了超低的能量消耗(每个尖峰约 25 fJ)、线性和大的电导变化。这项工作对于提高神经形态计算的准确性、速度和降低能耗做出了重要贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验