Tiwari Om Shanker, Aizen Ruth, Meli Massimiliano, Colombo Giorgio, Shimon Linda J W, Tal Noam, Gazit Ehud
The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel.
SCITEC-CNR, via Mario Bianco 9, 20131 Milano, Italy.
ACS Nano. 2023 Feb 28;17(4):3506-3517. doi: 10.1021/acsnano.2c09872. Epub 2023 Feb 6.
Molecular self- and co-assembly allow the formation of diverse and well-defined supramolecular structures with notable physical properties. Among the associating molecules, amino acids are especially attractive due to their inherent biocompatibility and simplicity. The biologically active enantiomer of l-histidine (l-His) plays structural and functional roles in proteins but does not self-assemble to form discrete nanostructures. In order to expand the structural space to include l-His-containing materials, we explored the co-assembly of l-His with all aromatic amino acids, including phenylalanine (Phe), tyrosine (Tyr), and tryptophan (Trp), all in both enantiomeric forms. In contrast to pristine l-His, the combination of this building block with all aromatic amino acids resulted in distinct morphologies including fibers, rods, and flake-like structures. Electrospray ionization mass spectrometry (ESI-MS) indicated the formation of supramolecular co-assemblies in all six combinations, but time-of-flight secondary-ion mass spectrometry (ToF-SIMS) indicated the best seamless co-assembly occurs between l-His and l-Phe while in the other cases, different degrees of phase separation could be observed. Indeed, isothermal titration calorimetry (ITC) suggested the highest affinity between l-His and l-Phe where the formation of co-assembled structures was driven by entropy. In accordance, among all the combinations, the co-assembly of l-His and l-Phe produced single crystals. The structure revealed the formation of a 3D network with nanocavities stabilized by hydrogen bonding between -N (l-His) and -NH (l-Phe). Taken together, using the co-assembly approach we expanded the field of amino acid nanomaterials and showed the ability to obtain discrete supramolecular nanostructures containing l-His based on its specific interactions with l-Phe.
分子自组装和共组装能够形成具有显著物理性质的多样且结构明确的超分子结构。在缔合分子中,氨基酸因其固有的生物相容性和简单性而格外引人注目。L-组氨酸(L-His)的生物活性对映体在蛋白质中发挥结构和功能作用,但不会自组装形成离散的纳米结构。为了扩展结构空间以纳入含L-His的材料,我们探索了L-His与所有芳香族氨基酸(包括苯丙氨酸(Phe)、酪氨酸(Tyr)和色氨酸(Trp))的共组装,这些氨基酸均有两种对映体形式。与原始的L-His不同,这种结构单元与所有芳香族氨基酸的组合产生了包括纤维、棒状和片状结构在内的不同形态。电喷雾电离质谱(ESI-MS)表明在所有六种组合中均形成了超分子共组装体,但飞行时间二次离子质谱(ToF-SIMS)表明,L-His与L-Phe之间的共组装效果最佳,而在其他情况下,可以观察到不同程度的相分离。事实上,等温滴定量热法(ITC)表明L-His与L-Phe之间的亲和力最高,其中共组装结构的形成是由熵驱动的。相应地,在所有组合中,L-His与L-Phe的共组装产生了单晶。该结构揭示了通过-N(L-His)和-NH(L-Phe)之间的氢键稳定形成了具有纳米腔的三维网络。综上所述,我们利用共组装方法扩展了氨基酸纳米材料领域,并展示了基于L-His与L-Phe的特定相互作用获得含L-His的离散超分子纳米结构的能力。