Suppr超能文献

利用对偶遗传关系数据对结核分枝杆菌传播的空间建模。

Spatial modeling of Mycobacterium tuberculosis transmission with dyadic genetic relatedness data.

机构信息

Department of Biostatistics, Yale University, Connecticut, USA.

Department of Epidemiology of Microbial Diseases, Yale University, Connecticut, USA.

出版信息

Biometrics. 2023 Dec;79(4):3650-3663. doi: 10.1111/biom.13836. Epub 2023 Feb 15.

Abstract

Understanding factors that contribute to the increased likelihood of pathogen transmission between two individuals is important for infection control. However, analyzing measures of pathogen relatedness to estimate these associations is complicated due to correlation arising from the presence of the same individual across multiple dyadic outcomes, potential spatial correlation caused by unmeasured transmission dynamics, and the distinctive distributional characteristics of some of the outcomes. We develop two novel hierarchical Bayesian spatial methods for analyzing dyadic pathogen genetic relatedness data, in the form of patristic distances and transmission probabilities, that simultaneously address each of these complications. Using individual-level spatially correlated random effect parameters, we account for multiple sources of correlation between the outcomes as well as other important features of their distribution. Through simulation, we show the limitations of existing approaches in terms of estimating key associations of interest, and the ability of the new methodology to correct for these issues across datasets with different levels of correlation. All methods are applied to Mycobacterium tuberculosis data from the Republic of Moldova, where we identify previously unknown factors associated with disease transmission and, through analysis of the random effect parameters, key individuals, and areas with increased transmission activity. Model comparisons show the importance of the new methodology in this setting. The methods are implemented in the R package GenePair.

摘要

了解导致两个个体之间病原体传播可能性增加的因素对于感染控制很重要。然而,由于个体在多个对偶结果中出现而导致的相关性、未测量的传播动态引起的潜在空间相关性,以及某些结果的独特分布特征,分析病原体相关性的度量来估计这些关联是很复杂的。我们开发了两种新的用于分析对偶病原体遗传相关性数据的分层贝叶斯空间方法,其形式为亲子距离和传播概率,这些方法同时解决了所有这些问题。使用个体水平的空间相关随机效应参数,我们可以解释结果之间的多种相关性来源以及它们分布的其他重要特征。通过模拟,我们展示了现有方法在估计感兴趣的关键关联方面的局限性,以及新方法在不同相关性水平的数据集上纠正这些问题的能力。所有方法都应用于摩尔多瓦共和国的结核分枝杆菌数据,我们在这些数据中确定了以前未知的与疾病传播相关的因素,并通过对随机效应参数、关键个体和传播活动增加的区域的分析,确定了这些因素。模型比较表明,这种新方法在这种情况下很重要。该方法在 R 包 GenePair 中实现。

相似文献

引用本文的文献

5
Approaches for Transmission Inference Based on Genomic Data.基于基因组数据的传播推断方法。
Am J Respir Crit Care Med. 2024 Sep 15;210(6):847-849. doi: 10.1164/rccm.202404-0835RL.
6
Reply to Cohen and to Lee.回复科恩和李。
Am J Respir Crit Care Med. 2024 Sep 15;210(6):850-852. doi: 10.1164/rccm.202406-1233LE.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验