Suppr超能文献

基于回归的成对基因组连锁数据建模可识别医疗相关感染传播的风险因素:在长期护理机构中应用于耐碳青霉烯类传播。

Regression-based modeling of pairwise genomic linkage data identifies risk factors for healthcare-associated infection transmission: Application to carbapenem-resistant transmission in a long-term care facility.

作者信息

Steinberg Hannah, Adediran Timileyin, Hayden Mary K, Snitkin Evan, Zelner Jon

机构信息

University of Michigan School of Public Health, Department of Epidemiology.

University of Michigan School of Public Health, Center for Social Epidemiology and Population Health.

出版信息

medRxiv. 2025 May 6:2025.05.06.25327000. doi: 10.1101/2025.05.06.25327000.

Abstract

BACKGROUND

Pathogen whole genome sequencing (WGS) has significant potential for improving healthcare-associated infection (HAI) outcomes. However, methods for integrating WGS with epidemiologic data to quantify risks for pathogen spread remain underdeveloped.

METHODS

To identify analytic strategies for conducting WGS-based HAI surveillance in high-burden settings, we modeled patient- and facility-level transmission risks of carbapenem-resistant (CRKP) in a long-term acute care hospital (LTACH). Using rectal surveillance data collected over one year, we fit three pairwise regression models with three different metrics of genomic relatedness for pairs of case isolates, a proxy for transmission linkage: 1) single-nucleotide variant genomic distance, 2) closest genomic donor, 3) common genomic cluster. To assess the performance of these approaches under real-world conditions defined by passive surveillance, we conducted a sensitivity study including only cases detected by admission surveillance or clinical symptoms.

RESULTS

Genomic relatedness between pairs of isolates was associated with room sharing in two of the three models and overlapping stays on a high-acuity unit in all models, echoing previous findings from LTACH settings. In our sensitivity analysis, qualitative findings were robust to the exclusion of cases that would not have been identified with a passive surveillance strategy, however uncertainty in all estimates also increased markedly.

CONCLUSIONS

Taken together, our results demonstrate that pairwise regression models combining relevant genomic and epidemiologic data are useful tools for identifying HAI transmission risks.

摘要

背景

病原体全基因组测序(WGS)在改善医疗相关感染(HAI)结局方面具有巨大潜力。然而,将WGS与流行病学数据整合以量化病原体传播风险的方法仍未充分发展。

方法

为了确定在高负担环境中开展基于WGS的HAI监测的分析策略,我们对一家长期急性护理医院(LTACH)中耐碳青霉烯肺炎克雷伯菌(CRKP)的患者和机构层面传播风险进行了建模。利用一年多时间收集的直肠监测数据,我们针对病例分离株对,采用三种不同的基因组相关性指标拟合了三个成对回归模型,以此作为传播关联的代理指标:1)单核苷酸变异基因组距离,2)最接近的基因组供体,3)共同基因组簇。为了评估这些方法在被动监测所定义的实际条件下的性能,我们开展了一项敏感性研究,仅纳入通过入院监测或临床症状检测到的病例。

结果

在三个模型中的两个模型里,分离株对之间的基因组相关性与病房共享有关,在所有模型中均与在高 acuity 病房的住院时间重叠有关,这与之前LTACH环境中的研究结果一致。在我们的敏感性分析中,定性结果对于排除那些采用被动监测策略无法识别的病例具有稳健性,然而所有估计中的不确定性也显著增加。

结论

综合来看,我们的结果表明,结合相关基因组和流行病学数据的成对回归模型是识别HAI传播风险的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7667/12083579/4d0c875da127/nihpp-2025.05.06.25327000v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验