Department of Town & Country Planning, Urban Simulation Laboratory, University of Moratuwa, Moratuwa, Sri Lanka.
PLoS One. 2023 Feb 6;18(2):e0275457. doi: 10.1371/journal.pone.0275457. eCollection 2023.
Vegetation land fragmentation has had numerous negative repercussions on sustainable development around the world. Urban planners are currently avidly investigating vegetation land fragmentation due to its effects on sustainable development. The literature has identified a research gap in the development of Artificial Intelligence [AI]-based models to simulate vegetation land fragmentation in urban contexts with multiple affecting elements. As a result, the primary aim of this research is to create an AI-based simulation framework to simulate vegetation land fragmentation in metropolitan settings. The main objective is to use non-linear analysis to identify the factors that contribute to vegetation land fragmentation. The proposed methodology is applied for Western Province, Sri Lanka. Accessibility growth, initial vegetation large patch size, initial vegetation land fragmentation, initial built-up land fragmentation, initial vegetation shape irregularity, initial vegetation circularity, initial building density, and initial vegetation patch association are the main variables used to frame the model among the 20 variables related to patches, corridors, matrix and other. This study created a feed-forward Artificial Neural Network [ANN] using R statistical software to analyze non-linear interactions and their magnitudes. The study likewise utilized WEKA software to create a Decision Tree [DT] modeling framework to explain the effect of variables. According to the ANN olden algorithm, accessibility growth has the maximum importance level [44] between -50 and 50, while DT reveals accessibility growth as the root of the Level of Vegetation Land Fragmentation [LVLF]. Small, irregular, and dispersed vegetation patches are especially vulnerable to fragmentation. As a result, study contributes detech and managing vegetation land fragmentation patterns in urban environments, while opening up vegetation land fragmentation research topics to AI applications.
植被土地破碎化对全球可持续发展产生了诸多负面影响。城市规划者目前热衷于研究植被土地破碎化,因为它会影响可持续发展。文献已经发现了人工智能 [AI] 模型开发中的研究空白,以模拟具有多种影响因素的城市环境中的植被土地破碎化。因此,本研究的主要目的是创建一个基于 AI 的模拟框架,以模拟大都市环境中的植被土地破碎化。主要目标是使用非线性分析来确定导致植被土地破碎化的因素。所提出的方法应用于斯里兰卡西部省。可达性增长、初始植被大斑块大小、初始植被土地破碎化、初始建成土地破碎化、初始植被形状不规则性、初始植被圆形度、初始建筑密度和初始植被斑块关联性是模型构建中使用的主要变量在与斑块、走廊、基质和其他相关的 20 个变量中。本研究使用 R 统计软件创建了一个前馈人工神经网络 [ANN],以分析非线性相互作用及其大小。该研究还使用 WEKA 软件创建了一个决策树 [DT] 建模框架,以解释变量的影响。根据 ANN 旧算法,可达性增长在 -50 到 50 之间具有最大的重要性级别 [44],而 DT 则将可达性增长视为植被土地破碎化水平 [LVLF] 的根源。小、不规则和分散的植被斑块特别容易受到破碎化的影响。因此,本研究有助于在城市环境中检测和管理植被土地破碎化模式,同时为 AI 应用开辟了植被土地破碎化研究主题。