Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.
Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR.
ACS Nano. 2023 Feb 28;17(4):3610-3619. doi: 10.1021/acsnano.2c10371. Epub 2023 Feb 6.
Rapid, sensitive, simultaneous quantification of multiple biomarkers in point-of-care (POC) settings could improve the diagnosis and management of sepsis, a common, potentially life-threatening condition. Compared to high-end commercial analytical systems, POC systems are often limited by low sensitivity, limited multiplexing capability, or low throughput. Here, we report an ultrasensitive, multiplexed plasmonic sensing technology integrating chemifluorescence signal enhancement with plasmon-enhanced fluorescence detection. Using a portable imaging system, the dual chemical and plasmonic amplification enabled rapid analysis of multiple cytokine biomarkers in 1 h with sub-pg/mL sensitivities. Furthermore, we also developed a plasmonic sensing chip based on nanoparticle-spiked gold nanodimple structures fabricated by wafer-scale batch processes. We used the system to detect six cytokines directly from clinical plasma samples ( = 20) and showed 100% accuracy for sepsis detection. The described technology could be employed in rapid, ultrasensitive, multiplexed plasmonic sensing in POC settings for myriad clinical conditions.
在即时检测(POC)环境中快速、灵敏、同时定量检测多种生物标志物,可以改善脓毒症(一种常见的、潜在的危及生命的病症)的诊断和管理。与高端商业分析系统相比,POC 系统通常受到灵敏度低、多重检测能力有限或通量低的限制。在这里,我们报告了一种超灵敏的、多重的等离子体传感技术,它将化学荧光信号增强与等离子体增强荧光检测相结合。使用便携式成像系统,通过双化学和等离子体放大,在 1 小时内以亚 pg/mL 的灵敏度快速分析多种细胞因子生物标志物。此外,我们还开发了一种基于纳米粒子增强金纳米凹坑结构的等离子体传感芯片,该结构由晶圆级批量工艺制造。我们使用该系统直接从临床血浆样本中检测六种细胞因子(n=20),并在脓毒症检测方面达到了 100%的准确率。所描述的技术可用于 POC 环境中快速、超灵敏、多重等离子体传感,适用于众多临床情况。