School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China 201210.
Acc Chem Res. 2023 Feb 21;56(4):462-474. doi: 10.1021/acs.accounts.2c00695. Epub 2023 Feb 6.
ConspectusCompositing MOFs with polymers brings out the best properties of both worlds. The solubility and excellent mechanical properties of polymers endow the brittle, powdery MOFs with enhanced processability, thereby enriching their functions as solid sorbents, filters, membranes, catalysts, drug delivery vehicles, and so forth. While most MOF-polymer composites are random mixtures of two materials with little control over their fine structures, MOF@polymer core-shell particles have recently emerged as a new platform for precise composite design. The well-defined polymer coating can keep the rich pore characteristics of the MOF intact while furnishing the MOF with new properties such as improved dispersibility in various media, tunable surface energy, enhanced chemical stability, and regulated guest diffusion. Nevertheless, the structural and chemical complexity of MOFs poses a grand challenge to the development of a generalizable and feasible strategy for constructing MOF@polymer. Examples in the literature that showcase the presence of a well-defined polymer shell on the MOF with fully reserved porosity are rare. Moreover, methods for coating MOFs with condensation polymers (e.g., polyimide, polysulfone) are severely underexplored, despite their clear potential as membrane materials. In this Account, we present our group's effort over the past 4 years on the synthesis and applications of MOF@polymer composites. We first described a highly generalizable surface polymerization method that utilizes the rapid physisorption of a random copolymer (RCP) to carry initiating groups to the MOF surfaces. Subsequent controlled radical polymerization led to the formation of a uniform methacrylate or styrenic polymer on the MOF with tunable thickness and composition. To utilize the properties of condensation polymers, we pioneered the covalent grafting of polyimide (PI) brushes to UiO-66-NH surfaces. In addition, to circumvent the need for a covalent anchoring group, we further developed an MOF surface grafting method based on mechanical linkage. Instead of connecting to the ligand, polyimide (PI) oligomer was linked to a functionalized linear polymer physically entangled within an MOF, thus realizing surface grafting with PI. Alternatively, PIs, polysulfone (PSF), and polycarbonate (PC) can also be grafted to various MOF surfaces through a metal-organic nanocapsule (MONC)-mediated method using a combination of electrostatic interaction and coordination bonds. To find a rapid and low-cost surface coating method suitable for commercialization, a new approach called non-solvent-induced surface-aimed deposition (NISAP) was developed. The action of the solvent phase separation drives dianhydrides and polyamines to the MOF surface, thus realizing accelerated polymerization and the rapid formation of a polymer coating on the MOF. Finally, we provided an overview of the unique properties and potential applications of MOF@polymer composites, including improved stability, MMMs, porous liquids (PLs), and immobilizing homogeneous catalysts. We hope that this Account can inspire more researchers to further develop and optimize the synthetic strategies for MOF@polymer and uncover its full application potential.
概述 将金属有机骨架(MOFs)与聚合物复合可充分发挥两者的优势。聚合物的高溶解性和优异的机械性能使脆性粉末状 MOFs 具有更好的加工性能,从而丰富了它们作为固体吸附剂、过滤器、膜、催化剂、药物输送载体等的功能。虽然大多数 MOF-聚合物复合材料是两种材料的随机混合物,对其精细结构几乎没有控制,但最近出现的 MOF@聚合物核壳粒子作为一种新的平台,为精确的复合材料设计提供了可能。明确的聚合物涂层可以保持 MOF 的丰富孔特征的完整性,同时赋予 MOF 新的性能,如在各种介质中提高分散性、可调表面能、增强化学稳定性和调节客体扩散。然而,MOFs 的结构和化学复杂性对发展通用可行的 MOF@聚合物构建策略构成了重大挑战。文献中展示 MOF 上具有完全保留的孔隙率的明确聚合物壳的例子很少。此外,尽管它们作为膜材料具有明显的潜力,但对 MOF 进行缩合聚合物(如聚酰亚胺、聚砜)涂覆的方法仍严重缺乏探索。在本综述中,我们介绍了我们小组在过去 4 年中对 MOF@聚合物复合材料的合成和应用的研究。我们首先描述了一种高度通用的表面聚合方法,该方法利用无规共聚物(RCP)的快速物理吸附将引发基团带到 MOF 表面。随后的可控自由基聚合导致在 MOF 上形成具有可调厚度和组成的均匀甲基丙烯酸酯或苯乙烯聚合物。为了利用缩合聚合物的性能,我们率先将聚酰亚胺(PI)刷共价接枝到 UiO-66-NH 表面。此外,为了避免需要共价锚固基团,我们进一步开发了一种基于机械连接的 MOF 表面接枝方法。聚酰亚胺(PI)低聚物不是连接到配体上,而是通过物理缠结在 MOF 内的功能化线性聚合物连接到 MOF 上,从而实现具有 PI 的表面接枝。或者,PI、聚砜(PSF)和聚碳酸酯(PC)也可以通过静电相互作用和配位键的组合,使用金属有机纳米胶囊(MONC)介导的方法,接枝到各种 MOF 表面。为了找到一种适合商业化的快速且低成本的表面涂覆方法,开发了一种称为非溶剂诱导表面靶向沉积(NISAP)的新方法。溶剂相分离的作用驱动二酐和聚胺到达 MOF 表面,从而实现加速聚合和 MOF 上聚合物涂层的快速形成。最后,我们概述了 MOF@聚合物复合材料的独特性质和潜在应用,包括提高稳定性、MMMs、多孔液体(PLs)和固定均相催化剂。我们希望本综述能够激发更多的研究人员进一步开发和优化 MOF@聚合物的合成策略,并揭示其全部应用潜力。