Suppr超能文献

非人灵长类动物大脑中转运体蛋白(TSPO)的定量评估以及[F]LW223作为TSPO靶向正电子发射断层显像(PET)放射性配体的临床转化

Quantitative assessment of translocator protein (TSPO) in the non-human primate brain and clinical translation of [F]LW223 as a TSPO-targeted PET radioligand.

作者信息

Tan Zhiqiang, Haider Achi, Zhang Shaojuan, Chen Jiahui, Wei Junjie, Liao Kai, Li Guocong, Wei Huiyi, Dong Chenchen, Ran Wenqing, Li Ying, Li Yuefeng, Rong Jian, Li Yinlong, Liang Steven H, Xu Hao, Wang Lu

机构信息

Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.

Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA 30322, USA.

出版信息

Pharmacol Res. 2023 Mar;189:106681. doi: 10.1016/j.phrs.2023.106681. Epub 2023 Feb 4.

Abstract

OBJECTIVES

Translocator protein 18 kDa (TSPO) positron emission tomography (PET) can be harnessed for the non-invasive detection of macrophage-driven inflammation. [F]LW223, a newly reported TSPO PET tracer which was insensitive to rs6971 polymorphism, showed favorable performance characteristics in a recent imaging study involving a rat myocardial infarction model. To enable quantitative neuroimaging with [F]LW223, we conducted kinetic analysis in the non-human primate (NHP) brain. Further, we sought to assess the utility of [F]LW223-based TSPO imaging in a first-in-human study.

METHODS

Radiosynthesis of [F]LW223 was accomplished on an automated module, whereas molar activities, stability in formulation, lipophilicity and unbound free fraction (f) of the probe were measured. Brain penetration and target specificity of [F]LW223 in NHPs were corroborated by PET-MR imaging under baseline and pre-blocking conditions using the validated TSPO inhibitor, (R)-PK11195, at doses ranging from 5 to 10 mg/kg. Kinetic modeling was performed using one-tissue compartment model (1TCM), two-tissue compartment model (2TCM) and Logan graphical analyses, using dynamic PET data acquisition, arterial blood collection and metabolic stability testing. Clinical PET scans were performed in two healthy volunteers (HVs). Regional brain standard uptake value ratio (SUVr) was assessed for different time intervals.

RESULTS

[F]LW223 was synthesized in non-decay corrected radiochemical yields (n.d.c. RCYs) of 33.3 ± 6.5% with molar activities ranging from 1.8 ± 0.7 Ci/µmol (n = 11). [F]LW223 was stable in formulation for up to 4 h and LogD of 2.31 ± 0.13 (n = 6) and f of 5.80 ± 1.42% (n = 6) were determined. [F]LW223 exhibited good brain penetration in NHPs, with a peak SUV value of ca. 1.79 in the whole brain. Pre-treatment with (R)-PK11195 substantially accelerated the washout and attenuated the area under the time-activity curve, indicating in vivo specificity of [F]LW223 towards TSPO. Kinetic modeling demonstrated that 2TCM was the most suitable model for [F]LW223-based neuroimaging. Global transfer rate constants (K) and total volumes of distribution (V) were found to be 0.10 ± 0.01 mL/cm/min and 2.30 ± 0.17 mL/cm, respectively. Dynamic PET data analyses across distinct time windows revealed that the V values were relatively stable after 60 min post-injection. In a preliminary clinical study with two healthy volunteers, [F]LW223 exhibited good brain uptake and considerable tracer retention across all analyzed brain regions. Of note, an excellent correlation between SUVr with V was obtained when assessing the time interval from 20 to 40 min post tracer injection (SUVr, R = 0.94, p < 0.0001), suggesting this time window may be suitable to estimate specific binding to TSPO in human brain.

CONCLUSION

Our findings indicate that [F]LW223 is suitable for quantitative TSPO-targeted PET imaging in higher species. Employing state-of-the-art kinetic modeling, we found that [F]LW223 was effective in mapping TSPO throughout the NHP brain, with best model fits obtained from 2TCM and Logan graphical analyses. Overall, our results indicate that [F]LW223 exhibits favorable tracer performance characteristics in higher species, and this novel imaging tool may hold promise to provide effective neuroinflammation imaging in patients with neurological disease.

摘要

目的

18 kDa转位蛋白(TSPO)正电子发射断层扫描(PET)可用于巨噬细胞驱动的炎症的无创检测。[F]LW223是一种新报道的对rs6971多态性不敏感的TSPO PET示踪剂,在最近一项涉及大鼠心肌梗死模型的成像研究中显示出良好的性能特征。为了实现用[F]LW223进行定量神经成像,我们在非人灵长类动物(NHP)大脑中进行了动力学分析。此外,我们试图在一项首次人体研究中评估基于[F]LW223的TSPO成像的效用。

方法

[F]LW223的放射性合成在一个自动化模块上完成,同时测量了该探针的摩尔活度、制剂中的稳定性、亲脂性和非结合游离分数(f)。在基线和预阻断条件下,使用经验证的TSPO抑制剂(R)-PK11195,剂量范围为每千克体重5至10毫克,通过PET-MR成像证实了[F]LW223在NHP中的脑渗透性和靶标特异性。使用单组织隔室模型(1TCM)、双组织隔室模型(2TCM)和洛根图形分析进行动力学建模,采用动态PET数据采集、动脉血采集和代谢稳定性测试。对两名健康志愿者(HV)进行了临床PET扫描。评估了不同时间间隔的脑区标准摄取值比率(SUVr)。

结果

[F]LW223的非衰变校正放射性化学产率(n.d.c. RCYs)为33.3±6.5%,摩尔活度范围为1.8±0.7居里/微摩尔(n = 11)。[F]LW223在制剂中最多可稳定4小时,LogD为2.31±0.13(n = 6),f为5.80±1.42%(n = 6)。[F]LW223在NHP中表现出良好的脑渗透性,全脑SUV峰值约为1.79。用(R)-PK11195预处理可显著加速清除并减弱时间-活度曲线下的面积,表明[F]LW223在体内对TSPO具有特异性。动力学建模表明,2TCM是基于[F]LW223的神经成像最合适的模型。全局转移速率常数(K)和分布总体积(V)分别为0.10±0.01毫升/厘米/分钟和2.30±0.17毫升/厘米。对不同时间窗的动态PET数据分析表明,注射后60分钟后V值相对稳定。在一项对两名健康志愿者的初步临床研究中,[F]LW223在所有分析的脑区均表现出良好的脑摄取和可观的示踪剂滞留。值得注意的是,在评估示踪剂注射后20至40分钟的时间间隔时,SUVr与V之间获得了极好的相关性(SUVr,R = 0.94,p < 0.0001),表明该时间窗可能适合估计人脑与TSPO的特异性结合。

结论

我们的研究结果表明,[F]LW223适用于在高等物种中进行定量TSPO靶向PET成像。采用最先进的动力学建模,我们发现[F]LW223在绘制整个NHP大脑中的TSPO方面是有效的,通过2TCM和洛根图形分析获得了最佳的模型拟合。总体而言,我们的结果表明,[F]LW223在高等物种中表现出良好的示踪剂性能特征,这种新型成像工具可能有望为神经系统疾病患者提供有效的神经炎症成像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验