Suppr超能文献

一种基于模型的用于Sholl分析的分层贝叶斯方法。

A Model-Based Hierarchical Bayesian Approach to Sholl Analysis.

作者信息

Vonkaenel Erik, Feidler Alexis, Lowery Rebecca, Andersh Katherine, Love Tanzy, Majewska Ania, McCall Matthew N

机构信息

Department of Biostatistics and Computational Biology, University of Rochester, NY 14642, USA.

Department of Neuroscience, University of Rochester, NY 14642, USA.

出版信息

bioRxiv. 2023 Jan 23:2023.01.23.525256. doi: 10.1101/2023.01.23.525256.

Abstract

Due to the link between microglial morphology and function, morphological changes in microglia are frequently used to identify pathological immune responses in the central nervous system. In the absence of pathology, microglia are responsible for maintaining homeostasis, and their morphology can be indicative of how the healthy brain behaves in the presence of external stimuli and genetic differences. Despite recent interest in high throughput methods for morphological analysis, Sholl analysis is still the gold standard for quantifying microglia morphology via imaging data. Often, the raw data are naturally hierarchical, minimally including many cells per image and many images per animal. However, existing methods for performing downstream inference on Sholl data rely on truncating this hierarchy so rudimentary statistical testing procedures can be used. To fill this longstanding gap, we introduce a fully parametric model-based approach for analyzing Sholl data. We generalize our model to a hierarchical Bayesian framework so that inference can be performed without aggressive reduction of otherwise very rich data. We apply our model to three real data examples and perform simulation studies comparing the proposed method with a popular alternative.

摘要

由于小胶质细胞形态与功能之间的联系,小胶质细胞的形态变化常被用于识别中枢神经系统中的病理性免疫反应。在没有病理学改变的情况下,小胶质细胞负责维持体内平衡,其形态可以指示健康大脑在外部刺激和基因差异存在时的行为方式。尽管最近人们对用于形态分析的高通量方法很感兴趣,但绍尔分析仍然是通过成像数据量化小胶质细胞形态的金标准。通常,原始数据天然具有层级结构,至少包括每张图像中有许多细胞以及每只动物有许多图像。然而,现有对绍尔数据进行下游推断的方法依赖于截断这种层级结构,以便能够使用基本的统计检验程序。为了填补这一长期存在的空白,我们引入了一种基于完全参数模型的方法来分析绍尔数据。我们将模型推广到分层贝叶斯框架,这样就可以在不大量减少原本非常丰富的数据的情况下进行推断。我们将我们的模型应用于三个实际数据示例,并进行模拟研究,将所提出的方法与一种流行的替代方法进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f0f/9900812/760e6efbbcc0/nihpp-2023.01.23.525256v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验