Suppr超能文献

分析Sholl数据的有效统计方法:混合效应模型与简单线性模型

Valid statistical approaches for analyzing sholl data: Mixed effects versus simple linear models.

作者信息

Wilson Machelle D, Sethi Sunjay, Lein Pamela J, Keil Kimberly P

机构信息

Clinical and Translational Science Center, Department of Public Health Sciences, Division of Biostatistics, University of California, Davis, CA, United States.

Department of Molecular Biosciences, University of California, Davis, CA, United States.

出版信息

J Neurosci Methods. 2017 Mar 1;279:33-43. doi: 10.1016/j.jneumeth.2017.01.003. Epub 2017 Jan 16.

Abstract

BACKGROUND

The Sholl technique is widely used to quantify dendritic morphology. Data from such studies, which typically sample multiple neurons per animal, are often analyzed using simple linear models. However, simple linear models fail to account for intra-class correlation that occurs with clustered data, which can lead to faulty inferences.

NEW METHOD

Mixed effects models account for intra-class correlation that occurs with clustered data; thus, these models more accurately estimate the standard deviation of the parameter estimate, which produces more accurate p-values. While mixed models are not new, their use in neuroscience has lagged behind their use in other disciplines.

RESULTS

A review of the published literature illustrates common mistakes in analyses of Sholl data. Analysis of Sholl data collected from Golgi-stained pyramidal neurons in the hippocampus of male and female mice using both simple linear and mixed effects models demonstrates that the p-values and standard deviations obtained using the simple linear models are biased downwards and lead to erroneous rejection of the null hypothesis in some analyses.

COMPARISON WITH EXISTING METHODS

The mixed effects approach more accurately models the true variability in the data set, which leads to correct inference.

CONCLUSIONS

Mixed effects models avoid faulty inference in Sholl analysis of data sampled from multiple neurons per animal by accounting for intra-class correlation. Given the widespread practice in neuroscience of obtaining multiple measurements per subject, there is a critical need to apply mixed effects models more widely.

摘要

背景

肖尔技术被广泛用于量化树突形态。此类研究的数据通常是对每只动物的多个神经元进行采样,这些数据常使用简单线性模型进行分析。然而,简单线性模型无法考虑聚类数据中出现的类内相关性,这可能导致错误的推断。

新方法

混合效应模型考虑了聚类数据中出现的类内相关性;因此,这些模型能更准确地估计参数估计值的标准差,从而产生更准确的p值。虽然混合模型并非新方法,但其在神经科学中的应用落后于在其他学科中的应用。

结果

对已发表文献的综述揭示了肖尔数据分析中的常见错误。使用简单线性模型和混合效应模型对从雄性和雌性小鼠海马体中经高尔基染色的锥体神经元收集的肖尔数据进行分析,结果表明,使用简单线性模型获得的p值和标准差存在向下偏差,在某些分析中会导致对原假设的错误拒绝。

与现有方法的比较

混合效应方法能更准确地对数据集中的真实变异性进行建模,从而得出正确的推断。

结论

混合效应模型通过考虑类内相关性,避免了在对每只动物的多个神经元采样的数据进行肖尔分析时出现错误推断。鉴于神经科学中普遍存在对每个研究对象进行多次测量的做法,迫切需要更广泛地应用混合效应模型。

相似文献

引用本文的文献

本文引用的文献

2
The anova to mixed model transition.方差分析到混合模型的转换。
Neurosci Biobehav Rev. 2016 Sep;68:1004-1005. doi: 10.1016/j.neubiorev.2016.05.034. Epub 2016 May 27.
7
Policy: NIH plans to enhance reproducibility.政策:NIH 计划提高可重复性。
Nature. 2014 Jan 30;505(7485):612-3. doi: 10.1038/505612a.
8
The dendritic hypothesis for Alzheimer's disease pathophysiology.阿尔茨海默病病理生理学的树突假说。
Brain Res Bull. 2014 Apr;103:18-28. doi: 10.1016/j.brainresbull.2013.12.004. Epub 2013 Dec 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验