Suppr超能文献

网络结构会影响所学神经表征的强度。

Network structure influences the strength of learned neural representations.

作者信息

Kahn Ari E, Szymula Karol, Loman Sophie, Haggerty Edda B, Nyema Nathaniel, Aguirre Geoffrey K, Bassett Dani S

机构信息

Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, 08540 USA.

Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, 14642 USA.

出版信息

bioRxiv. 2023 Aug 15:2023.01.23.525254. doi: 10.1101/2023.01.23.525254.

Abstract

Human experience is built upon sequences of discrete events. From those sequences, humans build impressively accurate models of their world. This process has been referred to as graph learning, a form of structure learning in which the mental model encodes the graph of event-to-event transition probabilities [1], [2], typically in medial temporal cortex [3]-[6]. Recent evidence suggests that some network structures are easier to learn than others [7]-[9], but the neural properties of this effect remain unknown. Here we use fMRI to show that the network structure of a temporal sequence of stimuli influences the fidelity with which those stimuli are represented in the brain. Healthy adult human participants learned a set of stimulus-motor associations following one of two graph structures. The design of our experiment allowed us to separate regional sensitivity to the structural, stimulus, and motor response components of the task. As expected, whereas the motor response could be decoded from neural representations in postcentral gyrus, the shape of the stimulus could be decoded from lateral occipital cortex. The structure of the graph impacted the nature of neural representations: when the graph was modular as opposed to lattice-like, BOLD representations in visual areas better predicted trial identity in a held-out run and displayed higher intrinsic dimensionality. Our results demonstrate that even over relatively short timescales, graph structure determines the fidelity of event representations as well as the dimensionality of the space in which those representations are encoded. More broadly, our study shows that network context influences the strength of learned neural representations, motivating future work in the design, optimization, and adaptation of network contexts for distinct types of learning over different timescales.

摘要

人类的经验建立在一系列离散事件之上。通过这些序列,人类构建出令人印象深刻的、对其世界的精确模型。这一过程被称为图学习,是结构学习的一种形式,其中心理模型对事件到事件的转换概率图进行编码[1,2],通常位于内侧颞叶皮质[3 - 6]。最近的证据表明,某些网络结构比其他结构更容易学习[7 - 9],但这种效应的神经特性仍然未知。在这里,我们使用功能磁共振成像(fMRI)来表明刺激的时间序列的网络结构会影响这些刺激在大脑中被表征的保真度。健康的成年人类参与者按照两种图结构之一学习了一组刺激 - 运动关联。我们的实验设计使我们能够区分对任务的结构、刺激和运动反应成分的区域敏感性。正如预期的那样,虽然运动反应可以从中央后回的神经表征中解码出来,但刺激的形状可以从枕叶外侧皮质中解码出来。图的结构影响了神经表征的性质:当图是模块化的而不是类似晶格的时候,视觉区域中的血氧水平依赖(BOLD)表征在一次留出的运行中能更好地预测试验身份,并且显示出更高的内在维度。我们的结果表明,即使在相对较短的时间尺度上,图结构也决定了事件表征的保真度以及编码这些表征的空间维度。更广泛地说,我们的研究表明网络背景会影响所学神经表征的强度,这激发了未来在不同时间尺度上针对不同类型学习的网络背景设计、优化和适应方面的工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4503/10443581/e3c5bff9548e/nihpp-2023.01.23.525254v2-f0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验