Suppr超能文献

利用小型基因编码四嗪氨基酸在哺乳动物细胞中进行超快速生物正交自旋标记和距离测量。

Ultra-Fast Bioorthogonal Spin-Labeling and Distance Measurements in Mammalian Cells Using Small, Genetically Encoded Tetrazine Amino Acids.

作者信息

Jana Subhashis, Evans Eric G B, Jang Hyo Sang, Zhang Shuyang, Zhang Hui, Rajca Andrzej, Gordon Sharona E, Zagotta William N, Stoll Stefan, Mehl Ryan A

机构信息

Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States.

Equal contributors.

出版信息

bioRxiv. 2023 Jan 31:2023.01.26.525763. doi: 10.1101/2023.01.26.525763.

Abstract

Studying protein structures and dynamics directly in the cellular environments in which they function is essential to fully understand the molecular mechanisms underlying cellular processes. Site-directed spin-labeling (SDSL)-in combination with double electron-electron resonance (DEER) spectroscopy-has emerged as a powerful technique for determining both the structural states and the conformational equilibria of biomacromolecules. In-cell DEER spectroscopy on proteins in mammalian cells has thus far not been possible due to the notable challenges of spin-labeling in live cells. In-cell SDSL requires exquisite biorthogonality, high labeling reaction rates and low background signal from unreacted residual spin label. While the bioorthogonal reaction must be highly specific and proceed under physiological conditions, many spin labels display time-dependent instability in the reducing cellular environment. Additionally, high concentrations of spin label can be toxic. Thus, an exceptionally fast bioorthogonal reaction is required that can allow for complete labeling with low concentrations of spin-label prior to loss of signal. Here we utilized genetic code expansion to site-specifically encode a novel family of small, tetrazine-bearing non-canonical amino acids (Tet-v4.0) at multiple sites in green fluorescent protein (GFP) and maltose binding protein (MBP) expressed both in and in human HEK293T cells. We achieved specific and quantitative spin-labeling of Tet-v4.0-containing proteins by developing a series of strained -cyclooctene (sTCO)-functionalized nitroxides-including a -diethyl-substituted nitroxide with enhanced stability in cells-with rate constants that can exceed 10 M s . The remarkable speed of the Tet-v4.0/sTCO reaction allowed efficient spin-labeling of proteins in live HEK293T cells within minutes, requiring only sub-micromolar concentrations of sTCO-nitroxide added directly to the culture medium. DEER recorded from intact cells revealed distance distributions in good agreement with those measured from proteins purified and labeled . Furthermore, DEER was able to resolve the maltose-dependent conformational change of Tet-v4.0-incorporated and spin-labeled MBP and successfully discerned the conformational state of MBP within HEK293T cells. We anticipate the exceptional reaction rates of this system, combined with the relatively short and rigid side chains of the resulting spin labels, will enable structure/function studies of proteins directly in cells, without any requirements for protein purification.

摘要

在蛋白质发挥功能的细胞环境中直接研究其结构和动力学,对于全面理解细胞过程背后的分子机制至关重要。定点自旋标记(SDSL)与双电子-电子共振(DEER)光谱相结合,已成为一种用于确定生物大分子结构状态和构象平衡的强大技术。由于在活细胞中进行自旋标记存在显著挑战,迄今为止,对哺乳动物细胞中的蛋白质进行细胞内DEER光谱分析尚无法实现。细胞内SDSL需要精确的生物正交性、高标记反应速率以及未反应的残留自旋标记产生的低背景信号。虽然生物正交反应必须高度特异性且在生理条件下进行,但许多自旋标记在还原性细胞环境中表现出时间依赖性的不稳定性。此外,高浓度的自旋标记可能有毒。因此,需要一种异常快速的生物正交反应,以便在信号损失之前能够用低浓度的自旋标记进行完全标记。在这里,我们利用遗传密码扩展在绿色荧光蛋白(GFP)和麦芽糖结合蛋白(MBP)的多个位点上进行位点特异性编码,这两种蛋白在大肠杆菌和人HEK293T细胞中均有表达,编码的是一类新型的含四嗪的小非标准氨基酸(Tet-v4.0)。通过开发一系列应变环辛烯(sTCO)功能化的氮氧化物,包括一种在细胞中稳定性增强的二乙基取代氮氧化物,其速率常数可超过10⁶ M⁻¹ s⁻¹,我们实现了对含Tet-v4.0蛋白的特异性和定量自旋标记。Tet-v4.0/sTCO反应的显著速度使得在几分钟内就能对活的HEK293T细胞中的蛋白质进行高效自旋标记,仅需将亚微摩尔浓度的sTCO-氮氧化物直接添加到培养基中。从完整细胞记录的DEER显示的距离分布与从纯化和标记的蛋白质测量的结果高度一致。此外,DEER能够解析掺入Tet-v4.0并进行自旋标记的MBP的麦芽糖依赖性构象变化,并成功辨别HEK293T细胞内MBP的构象状态。我们预计该系统的异常反应速率,结合所得自旋标记相对短而刚性的侧链,将能够直接在细胞中进行蛋白质的结构/功能研究,而无需对蛋白质进行纯化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a335/9901033/abd55f97d269/nihpp-2023.01.26.525763v2-f0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验