Suppr超能文献

蛋白质结构研究中自旋标记建模方法的比较评价。

Comparative evaluation of spin-label modeling methods for protein structural studies.

机构信息

Department of Chemistry, University of Washington, Seattle, Washington.

Department of Chemistry, University of Washington, Seattle, Washington.

出版信息

Biophys J. 2022 Sep 20;121(18):3508-3519. doi: 10.1016/j.bpj.2022.08.002. Epub 2022 Aug 10.

Abstract

Site-directed spin-labeling electron paramagnetic resonance spectroscopy is a powerful technique for the investigation of protein structure and dynamics. Accurate spin-label modeling methods are essential to make full quantitative use of site-directed spin-labeling electron paramagnetic resonance data for protein modeling and model validation. Using a set of double electron-electron resonance data from seven different site pairs on maltodextrin/maltose-binding protein under two different conditions using five different spin labels, we compare the ability of two widely used spin-label modeling methods, based on accessible volume sampling and rotamer libraries, to predict experimental distance distributions. We present a spin-label modeling approach inspired by canonical side-chain modeling methods and compare modeling accuracy with the established methods.

摘要

定点自旋标记电子顺磁共振波谱学是研究蛋白质结构和动力学的一种强大技术。准确的自旋标记建模方法对于充分利用定点自旋标记电子顺磁共振数据进行蛋白质建模和模型验证至关重要。我们使用一组来自麦芽糖结合蛋白在两种不同条件下的七个不同位点对的双电子电子共振数据,使用五种不同的自旋标记物,比较了两种广泛使用的基于可及体积采样和构象文库的自旋标记建模方法预测实验距离分布的能力。我们提出了一种受经典侧链建模方法启发的自旋标记建模方法,并将建模准确性与已有方法进行了比较。

相似文献

1
Comparative evaluation of spin-label modeling methods for protein structural studies.
Biophys J. 2022 Sep 20;121(18):3508-3519. doi: 10.1016/j.bpj.2022.08.002. Epub 2022 Aug 10.
2
Modeling of Cu(II)-based protein spin labels using rotamer libraries.
Phys Chem Chem Phys. 2024 Feb 22;26(8):6806-6816. doi: 10.1039/d3cp05951k.
4
EPR of site-directed spin-labeled proteins: A powerful tool to study structural flexibility.
Arch Biochem Biophys. 2020 May 15;684:108323. doi: 10.1016/j.abb.2020.108323. Epub 2020 Feb 29.
5
chiLife: An open-source Python package for in silico spin labeling and integrative protein modeling.
PLoS Comput Biol. 2023 Mar 31;19(3):e1010834. doi: 10.1371/journal.pcbi.1010834. eCollection 2023 Mar.
6
In-situ spin labeling of his-tagged proteins: distance measurements under in-cell conditions.
Chemistry. 2013 Oct 4;19(41):13714-9. doi: 10.1002/chem.201301921. Epub 2013 Aug 26.
7
A novel approach to modeling side chain ensembles of the bifunctional spin label RX.
bioRxiv. 2023 May 24:2023.05.24.542139. doi: 10.1101/2023.05.24.542139.
8
Rotamer libraries of spin labelled cysteines for protein studies.
Phys Chem Chem Phys. 2011 Feb 14;13(6):2356-66. doi: 10.1039/c0cp01865a. Epub 2010 Nov 30.
9
Distance measurements by continuous wave EPR spectroscopy to monitor protein folding.
Methods Mol Biol. 2011;752:73-96. doi: 10.1007/978-1-60327-223-0_6.

引用本文的文献

2
Sigmatropic rearrangement enables access to a highly stable spirocyclic nitroxide for protein spin labelling.
Chem Commun (Camb). 2025 May 1;61(37):6755-6758. doi: 10.1039/d5cc00472a.
3
Protein Modeling with DEER Spectroscopy.
Annu Rev Biophys. 2025 May;54(1):35-57. doi: 10.1146/annurev-biophys-030524-013431. Epub 2024 Dec 17.
6
Long-distance tmFRET using bipyridyl- and phenanthroline-based ligands.
Biophys J. 2024 Jul 16;123(14):2063-2075. doi: 10.1016/j.bpj.2024.01.034. Epub 2024 Feb 2.
7
Modeling of Cu(II)-based protein spin labels using rotamer libraries.
Phys Chem Chem Phys. 2024 Feb 22;26(8):6806-6816. doi: 10.1039/d3cp05951k.
8
Measuring conformational equilibria in allosteric proteins with time-resolved tmFRET.
Biophys J. 2024 Jul 16;123(14):2050-2062. doi: 10.1016/j.bpj.2024.01.033. Epub 2024 Feb 1.
9
Long-distance tmFRET using bipyridyl- and phenanthroline-based ligands.
bioRxiv. 2024 Jan 3:2023.10.09.561591. doi: 10.1101/2023.10.09.561591.
10
Measuring conformational equilibria in allosteric proteins with time-resolved tmFRET.
bioRxiv. 2024 Jan 3:2023.10.09.561594. doi: 10.1101/2023.10.09.561594.

本文引用的文献

1
Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET.
Nat Commun. 2022 Jul 29;13(1):4396. doi: 10.1038/s41467-022-31945-6.
2
Compactness regularization in the analysis of dipolar EPR spectroscopy data.
J Magn Reson. 2022 Jun;339:107218. doi: 10.1016/j.jmr.2022.107218. Epub 2022 Apr 9.
3
A Comparison of Cysteine-Conjugated Nitroxide Spin Labels for Pulse Dipolar EPR Spectroscopy.
Molecules. 2021 Dec 13;26(24):7534. doi: 10.3390/molecules26247534.
4
DeerLab: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data.
Magn Reson (Gott). 2020;1(2):209-224. doi: 10.5194/mr-1-209-2020. Epub 2020 Oct 1.
5
Resolving distance variations by single-molecule FRET and EPR spectroscopy using rotamer libraries.
Biophys J. 2021 Nov 2;120(21):4842-4858. doi: 10.1016/j.bpj.2021.09.021. Epub 2021 Sep 16.
6
Methodology for rigorous modeling of protein conformational changes by Rosetta using DEER distance restraints.
PLoS Comput Biol. 2021 Jun 16;17(6):e1009107. doi: 10.1371/journal.pcbi.1009107. eCollection 2021 Jun.
7
DEER Analysis of GPCR Conformational Heterogeneity.
Biomolecules. 2021 May 22;11(6):778. doi: 10.3390/biom11060778.
8
The contribution of modern EPR to structural biology.
Emerg Top Life Sci. 2018 Apr 20;2(1):9-18. doi: 10.1042/ETLS20170143.
9
Characterization of the ExoU activation mechanism using EPR and integrative modeling.
Sci Rep. 2020 Nov 12;10(1):19700. doi: 10.1038/s41598-020-76023-3.
10
Modeling of spin-spin distance distributions for nitroxide labeled biomacromolecules.
Phys Chem Chem Phys. 2020 Nov 4;22(42):24282-24290. doi: 10.1039/d0cp04920d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验