Guo Jiaqi, Lin Luotao, Aqeel Marah M, Gelfand Saul B, Eicher-Miller Heather A, Bhadra Anindya, Hennessy Erin, Richards Elizabeth A, Delp Edward J
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.
Department of Nutrition Science Purdue University, West Lafayette, IN, USA.
medRxiv. 2023 Jan 26:2023.01.23.23284780. doi: 10.1101/2023.01.23.23284780.
Both diet and physical activity are associated with obesity and chronic diseases such as diabetes and metabolic syndrome. Early efforts in connecting dietary and physical activity behaviors to generate patterns rarely considered the use of time. In this paper, we propose a distance-based cluster analysis approach to find joint temporal diet and physical activity patterns among U.S. adults ages 20-65. Dynamic Time Warping (DTW) generalized to multi-dimensions is combined with commonly used clustering methods to generate unbiased partitioning of the National Health and Nutrition Examination Survey 2003-2006 (NHANES) dataset. The clustering results are evaluated using visualization of the clusters, the Silhouette Index, and the associations between clusters and health status indicators based on multivariate regression models. Our experiments indicate that the integration of diet, physical activity, and time has the potential to discover joint temporal patterns with association to health.
饮食和身体活动都与肥胖以及糖尿病和代谢综合征等慢性疾病相关。早期将饮食和身体活动行为联系起来以形成模式的努力很少考虑时间的运用。在本文中,我们提出一种基于距离的聚类分析方法,以找出20至65岁美国成年人的联合时间饮食和身体活动模式。广义到多维度的动态时间规整(DTW)与常用聚类方法相结合,对2003 - 2006年国家健康和营养检查调查(NHANES)数据集进行无偏划分。使用聚类可视化、轮廓系数以及基于多元回归模型的聚类与健康状况指标之间的关联来评估聚类结果。我们的实验表明,饮食、身体活动和时间的整合有潜力发现与健康相关的联合时间模式。