Tota Ember M, Devaraj Neal K
bioRxiv. 2023 Jan 23:2023.01.23.525207. doi: 10.1101/2023.01.23.525207.
Bacterial tRNA guanine transglycosylases (TGTs) catalyze the exchange of guanine for the 7-deazaguanine queuine precursor, prequeuosine1 (preQ1). While the native nucleic acid substrate for bacterial TGTs is the anticodon loop of queuine-cognate tRNAs, the minimum recognition sequence for the enzyme is a structured hairpin containing the target G nucleobase in a "UGU" loop motif. Previous work has established an RNA modification system, RNA-TAG, in which E. coli TGT exchanges the target G on an RNA of interest for chemically modified preQ1 substrates linked to a small molecule reporter such as biotin or a fluorophore. While extending the substrate scope of RNA transglycosylases to include DNA would enable numerous applications, it has been previously reported that TGT is incapable of modifying native DNA. Here we demonstrate that TGT can in fact recognize and label specific DNA substrates. Through iterative testing of rationally mutated DNA hairpin sequences, we determined the minimal sequence requirements for transglycosylation of unmodified DNA by E. coli TGT. Controlling steric constraint in the DNA hairpin dramatically affects labeling efficiency, and, when optimized, can lead to near quantitative site-specific modification. We demonstrate the utility of our newly developed DNA-TAG system by rapidly synthesizing probes for fluorescent Northern blotting of spliceosomal U6 RNA and RNA FISH visualization of the long noncoding RNA, MALAT1. The ease and convenience of the DNA-TAG system will provide researchers with a tool for accessing a wide variety of affordable modified DNA substrates.
细菌的tRNA鸟嘌呤转糖基酶(TGT)催化鸟嘌呤与7-脱氮鸟嘌呤预Q1(preQ1)前体的交换。虽然细菌TGT的天然核酸底物是与预Q1相关的tRNA的反密码子环,但该酶的最小识别序列是一个结构化发夹,在“UGU”环基序中包含目标G核碱基。先前的工作建立了一种RNA修饰系统RNA-TAG,其中大肠杆菌TGT将感兴趣的RNA上的目标G与连接到生物素或荧光团等小分子报告物的化学修饰的preQ1底物进行交换。虽然将RNA转糖基酶的底物范围扩展到包括DNA将实现众多应用,但先前有报道称TGT无法修饰天然DNA。在这里,我们证明TGT实际上可以识别并标记特定的DNA底物。通过对合理突变的DNA发夹序列进行迭代测试,我们确定了大肠杆菌TGT对未修饰DNA进行转糖基化的最小序列要求。控制DNA发夹中的空间限制会显著影响标记效率,经过优化后,可实现近乎定量的位点特异性修饰。我们通过快速合成用于剪接体U6 RNA荧光Northern印迹和长链非编码RNA MALAT1的RNA FISH可视化的探针,展示了我们新开发的DNA-TAG系统的实用性。DNA-TAG系统的简便性将为研究人员提供一种工具,用于获取各种经济实惠的修饰DNA底物。