School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, P. R. China.
Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China.
Angew Chem Int Ed Engl. 2023 Mar 27;62(14):e202216232. doi: 10.1002/anie.202216232. Epub 2023 Feb 23.
Rational engineering active sites and vantage defects of catalysts are promising but grand challenging task to enhance photoreduction CO to high value-added C2 products. In this study, we designed an N,S-codoped Fe-based MIL-88B catalyst with well-defined bipyramidal hexagonal prism morphology via a facile and effective process, which was synthesized by addition of appropriate 1,2-benzisothiazolin-3-one (BIT) and acetic acid to the reaction solution. Under simulated solar irradiation, the designed catalyst exhibits high C H evolution yield of 17.7 μmol g ⋅h, which has been rarely achieved in photocatalytic CO reduction process. The synergistic effect of Fe-N coordinated sites and reasonable defects in the N,S-codoped photocatalyst can accelerate the migration of photogenerated carriers, resulting in high electron density, and this in turn helps to facilitate the formation and dimerization of C-C coupling intermediates for C H effectively.
理性设计催化剂的活性位和有利缺陷,对于提高光还原 CO 为高附加值 C2 产物具有重要意义,这是一项极具挑战性的任务。在本研究中,我们通过简便有效的方法,设计了一种具有明确的双锥六棱柱形态的 N,S 共掺杂 Fe 基 MIL-88B 催化剂,该方法是通过在反应溶液中添加适量的 1,2-苯并异噻唑啉-3-酮(BIT)和乙酸来实现的。在模拟太阳光照射下,所设计的催化剂表现出高达 17.7 μmol·g-1·h-1 的 CH 生成产率,这在光催化 CO 还原过程中很少见。在 N,S 共掺杂光催化剂中,Fe-N 配位位和合理缺陷的协同作用可以加速光生载流子的迁移,从而产生高电子密度,这反过来又有助于促进 C-C 偶联中间体的形成和二聚化,从而有效地生成 CH。