Suppr超能文献

表面氢化的CrMnO与GaN纳米线耦合用于光驱动生物乙醇脱水制乙烯。

Surface-hydrogenated CrMnO coupled with GaN nanowires for light-driven bioethanol dehydration to ethylene.

作者信息

Wang Zhouzhou, Ye Haotian, Li Yixin, Sheng Bowen, Wang Ping, Ou Pengfei, Li Xiao-Yan, Yu Tianqi, Huang Zijian, Li Jinglin, Yu Ying, Wang Xinqiang, Huang Zhen, Zhou Baowen

机构信息

Key Laboratory for Power Machinery and Engineering of Ministry of Education, Research Center for Renewable Synthetic Fuel, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

Institute of Nanoscience and Nanotechnology, College of Physical Science and Technology, Central China Normal University, Wuhan, 430079, China.

出版信息

Nat Commun. 2025 Jan 24;16(1):1002. doi: 10.1038/s41467-025-56277-z.

Abstract

Light-driven bioethanol dehydration offers attractive outlooks for the sustainable production of ethylene. Herein, a surface-hydrogenated CrMnO is coupled with GaN nanowires (GaN@CMO-H) for light-driven ethanol dehydration to ethylene. Through combined experimental and computational investigations, a surface hydrogen-replenishment mechanism is proposed to disclose the ethanol dehydration pathway over GaN@CMO-H. Moreover, the surface-hydrogenated GaN@CMO-H can significantly lower the reaction energy barrier of the CHOH-to-CH conversion by switching the rate-determining reaction step compared to both GaN and GaN@CMO. Consequently, the surface-hydrogenated GaN@CMO-H illustrates a considerable ethylene production activity of 1.78 mol·g·h with a high turnover number of 94,769 mole ethylene per mole CrMnO. This work illustrates a new route for sustainable ethylene production with the only use of bioethanol and sunlight beyond fossil fuels.

摘要

光驱动生物乙醇脱水为乙烯的可持续生产提供了诱人的前景。在此,表面氢化的CrMnO与GaN纳米线(GaN@CMO-H)耦合用于光驱动乙醇脱水制乙烯。通过实验和计算相结合的研究,提出了一种表面氢补充机制来揭示GaN@CMO-H上乙醇脱水的途径。此外,与GaN和GaN@CMO相比,表面氢化的GaN@CMO-H通过切换速率决定反应步骤,可显著降低CHOH到CH转化的反应能垒。因此,表面氢化的GaN@CMO-H表现出相当可观的乙烯生产活性,为1.78 mol·g·h,每摩尔CrMnO的乙烯周转数高达94,769摩尔。这项工作展示了一条仅使用生物乙醇和阳光而非化石燃料的可持续乙烯生产新路线。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f70/11760371/812b8768f622/41467_2025_56277_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验