Suppr超能文献

用于转录因子结合位点预测的双分支网络对局部特征和全局表示的协同作用

Cooperation of local features and global representations by a dual-branch network for transcription factor binding sites prediction.

作者信息

Yu Yutong, Ding Pengju, Gao Hongli, Liu Guozhu, Zhang Fa, Yu Bin

机构信息

College of Information Science and Technology, Qingdao University of Science and Technology, China.

College of Mathematics and Physics, Qingdao University of Science and Technology, China.

出版信息

Brief Bioinform. 2023 Mar 19;24(2). doi: 10.1093/bib/bbad036.

Abstract

Interactions between DNA and transcription factors (TFs) play an essential role in understanding transcriptional regulation mechanisms and gene expression. Due to the large accumulation of training data and low expense, deep learning methods have shown huge potential in determining the specificity of TFs-DNA interactions. Convolutional network-based and self-attention network-based methods have been proposed for transcription factor binding sites (TFBSs) prediction. Convolutional operations are efficient to extract local features but easy to ignore global information, while self-attention mechanisms are expert in capturing long-distance dependencies but difficult to pay attention to local feature details. To discover comprehensive features for a given sequence as far as possible, we propose a Dual-branch model combining Self-Attention and Convolution, dubbed as DSAC, which fuses local features and global representations in an interactive way. In terms of features, convolution and self-attention contribute to feature extraction collaboratively, enhancing the representation learning. In terms of structure, a lightweight but efficient architecture of network is designed for the prediction, in particular, the dual-branch structure makes the convolution and the self-attention mechanism can be fully utilized to improve the predictive ability of our model. The experiment results on 165 ChIP-seq datasets show that DSAC obviously outperforms other five deep learning based methods and demonstrate that our model can effectively predict TFBSs based on sequence feature alone. The source code of DSAC is available at https://github.com/YuBinLab-QUST/DSAC/.

摘要

DNA与转录因子(TFs)之间的相互作用在理解转录调控机制和基因表达方面起着至关重要的作用。由于训练数据的大量积累和低成本,深度学习方法在确定TFs与DNA相互作用的特异性方面显示出巨大潜力。基于卷积网络和基于自注意力网络的方法已被提出用于转录因子结合位点(TFBSs)预测。卷积操作有效地提取局部特征,但容易忽略全局信息,而自注意力机制擅长捕捉长距离依赖关系,但难以关注局部特征细节。为了尽可能发现给定序列的综合特征,我们提出了一种结合自注意力和卷积的双分支模型,称为DSAC,它以交互方式融合局部特征和全局表示。在特征方面,卷积和自注意力协同促进特征提取,增强表示学习。在结构方面,设计了一种轻量级但高效的网络架构用于预测,特别是双分支结构使得卷积和自注意力机制能够充分利用,提高我们模型的预测能力。在165个ChIP-seq数据集上的实验结果表明,DSAC明显优于其他五种基于深度学习的方法,并证明我们的模型仅基于序列特征就能有效地预测TFBSs。DSAC的源代码可在https://github.com/YuBinLab-QUST/DSAC/获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验