Suppr超能文献

千里光生物碱缀合物诱导靶向蛋白降解。

Piperlongumine conjugates induce targeted protein degradation.

机构信息

Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA.

Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA.

出版信息

Cell Chem Biol. 2023 Feb 16;30(2):203-213.e17. doi: 10.1016/j.chembiol.2023.01.004. Epub 2023 Feb 6.

Abstract

Proteolysis targeting chimeras (PROTACs) are bifunctional molecules that degrade target proteins through recruiting E3 ligases. However, their application is limited in part because few E3 ligases can be recruited by known E3 ligase ligands. In this study, we identified piperlongumine (PL), a natural product, as a covalent E3 ligase recruiter, which induces CDK9 degradation when it is conjugated with SNS-032, a CDK9 inhibitor. The lead conjugate 955 can potently degrade CDK9 in a ubiquitin-proteasome-dependent manner and is much more potent than SNS-032 against various tumor cells in vitro. Mechanistically, we identified KEAP1 as the E3 ligase recruited by 955 to degrade CDK9 through a TurboID-based proteomics study, which was further confirmed by KEAP1 knockout and the nanoBRET ternary complex formation assay. In addition, PL-ceritinib conjugate can degrade EML4-ALK fusion oncoprotein, suggesting that PL may have a broader application as a covalent E3 ligase ligand in targeted protein degradation.

摘要

蛋白水解靶向嵌合体(PROTACs)是通过招募 E3 连接酶来降解靶蛋白的双功能分子。然而,它们的应用受到限制,部分原因是已知的 E3 连接酶配体只能招募少数 E3 连接酶。在这项研究中,我们发现天然产物胡椒碱(PL)可作为一种共价 E3 连接酶招募物,当它与 CDK9 抑制剂 SNS-032 缀合时,可诱导 CDK9 降解。先导缀合物 955 能够以依赖泛素-蛋白酶体的方式有效降解 CDK9,并且比 SNS-032 对体外各种肿瘤细胞的活性更强。在机制上,我们通过 TurboID 基于蛋白质组学的研究鉴定出 KEAP1 是 955 招募的 E3 连接酶,通过 KEAP1 敲除和 nanoBRET 三元复合物形成测定进一步证实了这一点。此外,PL-色瑞替尼缀合物可降解 EML4-ALK 融合癌蛋白,表明 PL 可能更广泛地用作靶向蛋白降解的共价 E3 连接酶配体。

相似文献

1
Piperlongumine conjugates induce targeted protein degradation.
Cell Chem Biol. 2023 Feb 16;30(2):203-213.e17. doi: 10.1016/j.chembiol.2023.01.004. Epub 2023 Feb 6.
2
Exploring the target scope of KEAP1 E3 ligase-based PROTACs.
Cell Chem Biol. 2022 Oct 20;29(10):1470-1481.e31. doi: 10.1016/j.chembiol.2022.08.003. Epub 2022 Sep 6.
3
Expansion of targeted degradation by Gilteritinib-Warheaded PROTACs to ALK fusion proteins.
Bioorg Chem. 2024 Apr;145:107204. doi: 10.1016/j.bioorg.2024.107204. Epub 2024 Feb 14.
4
Harnessing the E3 Ligase KEAP1 for Targeted Protein Degradation.
J Am Chem Soc. 2021 Sep 22;143(37):15073-15083. doi: 10.1021/jacs.1c04841. Epub 2021 Sep 14.
5
E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones.
SLAS Discov. 2021 Apr;26(4):484-502. doi: 10.1177/2472555220965528. Epub 2020 Nov 3.
6
Discovery of E3 Ligase Ligands for Target Protein Degradation.
Molecules. 2022 Oct 2;27(19):6515. doi: 10.3390/molecules27196515.
7
Exploiting the Cullin E3 Ligase Adaptor Protein SKP1 for Targeted Protein Degradation.
ACS Chem Biol. 2024 Feb 16;19(2):442-450. doi: 10.1021/acschembio.3c00642. Epub 2024 Feb 2.
8
Targeted degradation of anaplastic lymphoma kinase by gold nanoparticle-based multi-headed proteolysis targeting chimeras.
Colloids Surf B Biointerfaces. 2020 Apr;188:110795. doi: 10.1016/j.colsurfb.2020.110795. Epub 2020 Jan 13.
9
Modeling the CRL4A ligase complex to predict target protein ubiquitination induced by cereblon-recruiting PROTACs.
J Biol Chem. 2022 Apr;298(4):101653. doi: 10.1016/j.jbc.2022.101653. Epub 2022 Jan 29.
10
Targeted Protein Degradation through E2 Recruitment.
ACS Chem Biol. 2023 Apr 21;18(4):897-904. doi: 10.1021/acschembio.3c00040. Epub 2023 Mar 20.

引用本文的文献

1
E3 ubiquitin ligases in signaling, disease, and therapeutics.
Trends Biochem Sci. 2025 Sep 11. doi: 10.1016/j.tibs.2025.07.009.
2
Chemical knockdown of Keap1 and homoPROTAC-ing allergic rhinitis.
Acta Pharm Sin B. 2025 Aug;15(8):4137-4155. doi: 10.1016/j.apsb.2025.05.025. Epub 2025 May 27.
3
FDA-approved kinase inhibitors in PROTAC design, development and synthesis.
J Enzyme Inhib Med Chem. 2025 Dec;40(1):2542357. doi: 10.1080/14756366.2025.2542357. Epub 2025 Aug 12.
4
Advances in KEAP1-based PROTACs as emerging therapeutic modalities: Structural basis and progress.
Redox Biol. 2025 Jul 21;85:103781. doi: 10.1016/j.redox.2025.103781.
5
Unraveling the secrets of novel PROTACs to improve degradation efficacy.
Mol Divers. 2025 Jul 5. doi: 10.1007/s11030-025-11273-9.
6
Targeting CDKs in cancer therapy: advances in PROTACs and molecular glues.
NPJ Precis Oncol. 2025 Jun 28;9(1):204. doi: 10.1038/s41698-025-00931-8.
7
First ATG101-recruiting small molecule degrader for selective CDK9 degradation autophagy-lysosome pathway.
Acta Pharm Sin B. 2025 May;15(5):2612-2624. doi: 10.1016/j.apsb.2025.03.047. Epub 2025 Apr 4.
8
Employing Expression-Matched Controls Enables High-Confidence Proximity-Based Interactome Classification.
Mol Cell Proteomics. 2025 May 27;24(7):101001. doi: 10.1016/j.mcpro.2025.101001.
9
Proteome-wide ligandability maps of drugs with diverse cysteine-reactive chemotypes.
Nat Commun. 2025 May 26;16(1):4863. doi: 10.1038/s41467-025-60068-x.
10
Application of Fluorescence- and Bioluminescence-Based Biosensors in Cancer Drug Discovery.
Biosensors (Basel). 2024 Nov 24;14(12):570. doi: 10.3390/bios14120570.

本文引用的文献

1
Mathematical Model for Covalent Proteolysis Targeting Chimeras: Thermodynamics and Kinetics Underlying Catalytic Efficiency.
J Med Chem. 2023 May 11;66(9):6239-6250. doi: 10.1021/acs.jmedchem.2c02076. Epub 2023 Apr 26.
2
Discovery of a Covalent FEM1B Recruiter for Targeted Protein Degradation Applications.
J Am Chem Soc. 2022 Jan 19;144(2):701-708. doi: 10.1021/jacs.1c03980. Epub 2022 Jan 7.
3
Development of a BCL-xL and BCL-2 dual degrader with improved anti-leukemic activity.
Nat Commun. 2021 Nov 25;12(1):6896. doi: 10.1038/s41467-021-27210-x.
4
The Resistance Mechanisms and Treatment Strategies for ALK-Rearranged Non-Small Cell Lung Cancer.
Front Oncol. 2021 Oct 1;11:713530. doi: 10.3389/fonc.2021.713530. eCollection 2021.
5
Harnessing the E3 Ligase KEAP1 for Targeted Protein Degradation.
J Am Chem Soc. 2021 Sep 22;143(37):15073-15083. doi: 10.1021/jacs.1c04841. Epub 2021 Sep 14.
6
The role of reversible and irreversible covalent chemistry in targeted protein degradation.
Cell Chem Biol. 2021 Jul 15;28(7):952-968. doi: 10.1016/j.chembiol.2021.03.005. Epub 2021 Mar 30.
7
DCAF11 Supports Targeted Protein Degradation by Electrophilic Proteolysis-Targeting Chimeras.
J Am Chem Soc. 2021 Apr 7;143(13):5141-5149. doi: 10.1021/jacs.1c00990. Epub 2021 Mar 30.
8
Targeted protein degraders crowd into the clinic.
Nat Rev Drug Discov. 2021 Apr;20(4):247-250. doi: 10.1038/d41573-021-00052-4.
9
Comparative performance of the BGI and Illumina sequencing technology for single-cell RNA-sequencing.
NAR Genom Bioinform. 2020 May 13;2(2):lqaa034. doi: 10.1093/nargab/lqaa034. eCollection 2020 Jun.
10
The rise of covalent proteolysis targeting chimeras.
Curr Opin Chem Biol. 2021 Jun;62:24-33. doi: 10.1016/j.cbpa.2020.12.003. Epub 2021 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验