Pharmacokinetics and Drug Metabolism, Amgen Research, South San Francisco, California, USA.
Research and Development Department, Promega Corporation, Madison, Wisconsin, USA.
J Biol Chem. 2022 Apr;298(4):101653. doi: 10.1016/j.jbc.2022.101653. Epub 2022 Jan 29.
PROteolysis TArgeting Chimeras (PROTACs) are hetero-bifunctional small molecules that can simultaneously recruit target proteins and E3 ligases to form a ternary complex, promoting target protein ubiquitination and degradation via the Ubiquitin-Proteasome System (UPS). PROTACs have gained increasing attention in recent years due to certain advantages over traditional therapeutic modalities and enabling targeting of previously "undruggable" proteins. To better understand the mechanism of PROTAC-induced Target Protein Degradation (TPD), several computational approaches have recently been developed to study and predict ternary complex formation. However, mounting evidence suggests that ubiquitination can also be a rate-limiting step in PROTAC-induced TPD. Here, we propose a structure-based computational approach to predict target protein ubiquitination induced by cereblon (CRBN)-based PROTACs by leveraging available structural information of the CRL4A ligase complex (CRBN/DDB1/CUL4A/Rbx1/NEDD8/E2/Ub). We generated ternary complex ensembles with Rosetta, modeled multiple CRL4A ligase complex conformations, and predicted ubiquitination efficiency by separating the ternary ensemble into productive and unproductive complexes based on the proximity of the ubiquitin to accessible lysines on the target protein. We validated our CRL4A ligase complex models with published ternary complex structures and additionally employed our modeling workflow to predict ubiquitination efficiencies and sites of a series of cyclin-dependent kinases (CDKs) after treatment with TL12-186, a pan-kinase PROTAC. Our predictions are consistent with CDK ubiquitination and site-directed mutagenesis of specific CDK lysine residues as measured using a NanoBRET ubiquitination assay in HEK293 cells. This work structurally links PROTAC-induced ternary formation and ubiquitination, representing an important step toward prediction of target "degradability."
蛋白水解靶向嵌合体(PROTACs)是一种同时招募靶蛋白和 E3 连接酶形成三元复合物的杂双功能小分子,通过泛素-蛋白酶体系统(UPS)促进靶蛋白的泛素化和降解。由于某些优点超过传统的治疗方式,以及能够靶向以前“不可成药”的蛋白质,PROTACs 近年来受到越来越多的关注。为了更好地理解 PROTAC 诱导的靶蛋白降解(TPD)的机制,最近已经开发了几种计算方法来研究和预测三元复合物的形成。然而,越来越多的证据表明,泛素化也可能是 PROTAC 诱导的 TPD 的限速步骤。在这里,我们提出了一种基于结构的计算方法,通过利用 CRL4A 连接酶复合物(CRBN/DDB1/CUL4A/Rbx1/NEDD8/E2/Ub)的可用结构信息,来预测基于 cereblon(CRBN)的 PROTAC 诱导的靶蛋白泛素化。我们使用 Rosetta 生成三元复合物集合,对多个 CRL4A 连接酶复合物构象进行建模,并根据目标蛋白上可及赖氨酸与泛素的接近程度,将三元复合物集合分为有生产力和无生产力的复合物,从而预测泛素化效率。我们使用已发表的三元复合物结构验证了我们的 CRL4A 连接酶复合物模型,此外还使用我们的建模工作流程来预测一系列细胞周期蛋白依赖性激酶(CDKs)在 TL12-186(一种泛激酶 PROTAC)处理后的泛素化效率和位点。我们的预测与 CDK 泛素化以及使用 HEK293 细胞中的 NanoBRET 泛素化测定法测量的特定 CDK 赖氨酸残基的定点突变一致。这项工作在结构上联系了 PROTAC 诱导的三元形成和泛素化,是预测靶“降解性”的重要一步。