Suppr超能文献

通过使用深度神经网络势的分子动力学模拟来获取 SbTe 和 BiTe/SbTe 超晶格的热导率。

Accessing the thermal conductivities of SbTe and BiTe/SbTe superlattices by molecular dynamics simulations with a deep neural network potential.

机构信息

Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China.

Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.

出版信息

Phys Chem Chem Phys. 2023 Feb 22;25(8):6164-6174. doi: 10.1039/d2cp05590b.

Abstract

Phonon thermal transport is a key feature for the operation of thermoelectric materials, but it is challenging to accurately calculate the thermal conductivity of materials with strong anharmonicity or large cells. In this work, a deep neural network potential (NNP) is developed using a dataset based on density functional theory (DFT) and applied to describe the lattice dynamics of SbTe and BiTe/SbTe superlattices. The lattice thermal conductivities of SbTe are first predicted using equilibrium molecular dynamics (EMD) simulations combined with an NNP and the results match well with experimental values. Then, through further exploration of weighted phase spaces and the Grüneisen parameter, we find that there is a stronger anharmonicity in the out-of-plane direction in SbTe, which is the reason why the thermal conductivities are overestimated more in the out-of-plane direction than in the in-plane direction by solving the phonon Boltzmann transport equation (BTE) with only three-phonon scattering processes being considered. More importantly, the lattice thermal conductivities of BiTe/SbTe superlattices with different periods are accurately predicted using non-equilibrium molecular dynamics (NEMD) simulations together with an NNP, which serves as a good example to explore the thermal transport physics of superlattices using a deep neural network potential.

摘要

声子热输运是热电器件运行的关键特性,但对于具有强非谐性或大晶格的材料,准确计算其热导率具有挑战性。在这项工作中,我们使用基于密度泛函理论(DFT)的数据集开发了一种深度神经网络势(NNP),并将其应用于 SbTe 和 BiTe/SbTe 超晶格的晶格动力学描述。首先,通过平衡分子动力学(EMD)模拟结合 NNP 预测了 SbTe 的晶格热导率,结果与实验值吻合较好。然后,通过进一步探索加权相空间和格林艾森参数,我们发现 SbTe 中面外方向的非谐性更强,这就是为什么在仅考虑三声子散射过程的情况下,通过求解声子玻尔兹曼输运方程(BTE),面外方向的热导率被高估得更多的原因。更重要的是,我们使用非平衡分子动力学(NEMD)模拟结合 NNP 准确预测了不同周期的 BiTe/SbTe 超晶格的晶格热导率,这为使用深度神经网络势探索超晶格的热输运物理提供了一个很好的范例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验