Suppr超能文献

基于深度学习的实时内镜下胃肿瘤临床决策支持系统:开发和验证研究。

Deep learning-based clinical decision support system for gastric neoplasms in real-time endoscopy: development and validation study.

机构信息

Department of Internal Medicine, Hallym University College of Medicine, Chuncheon, South Korea.

Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, South Korea.

出版信息

Endoscopy. 2023 Aug;55(8):701-708. doi: 10.1055/a-2031-0691. Epub 2023 Feb 8.

Abstract

BACKGROUND

Deep learning models have previously been established to predict the histopathology and invasion depth of gastric lesions using endoscopic images. This study aimed to establish and validate a deep learning-based clinical decision support system (CDSS) for the automated detection and classification (diagnosis and invasion depth prediction) of gastric neoplasms in real-time endoscopy. METHODS : The same 5017 endoscopic images that were employed to establish previous models were used for the training data. The primary outcomes were: (i) the lesion detection rate for the detection model, and (ii) the lesion classification accuracy for the classification model. For performance validation of the lesion detection model, 2524 real-time procedures were tested in a randomized pilot study. Consecutive patients were allocated either to CDSS-assisted or conventional screening endoscopy. The lesion detection rate was compared between the groups. For performance validation of the lesion classification model, a prospective multicenter external test was conducted using 3976 novel images from five institutions. RESULTS : The lesion detection rate was 95.6 % (internal test). On performance validation, CDSS-assisted endoscopy showed a higher lesion detection rate than conventional screening endoscopy, although statistically not significant (2.0 % vs. 1.3 %;  = 0.21) (randomized study). The lesion classification rate was 89.7 % in the four-class classification (advanced gastric cancer, early gastric cancer, dysplasia, and non-neoplastic) and 89.2 % in the invasion depth prediction (mucosa confined or submucosa invaded; internal test). On performance validation, the CDSS reached 81.5 % accuracy in the four-class classification and 86.4 % accuracy in the binary classification (prospective multicenter external test). CONCLUSIONS : The CDSS demonstrated its potential for real-life clinical application and high performance in terms of lesion detection and classification of detected lesions in the stomach.

摘要

背景

深度学习模型此前已被建立,用于使用内镜图像预测胃病变的组织病理学和浸润深度。本研究旨在建立和验证一种基于深度学习的临床决策支持系统(CDSS),用于实时内镜下胃肿瘤的自动检测和分类(诊断和浸润深度预测)。

方法

使用相同的 5017 个内镜图像来建立以前的模型作为训练数据。主要结局指标为:(i)检测模型的病变检测率,和(ii)分类模型的病变分类准确率。为了验证病变检测模型的性能,在一项随机试点研究中对 2524 例实时内镜检查进行了测试。连续患者被分配到 CDSS 辅助或常规筛查内镜检查组。比较两组之间的病变检测率。为了验证病变分类模型的性能,采用来自五个机构的 3976 个新图像进行了前瞻性多中心外部测试。

结果

病变检测率为 95.6%(内部测试)。在性能验证中,CDSS 辅助内镜检查显示出比常规筛查内镜检查更高的病变检测率,尽管统计学上无显著差异(2.0%比 1.3%; = 0.21)(随机研究)。在四分类(进展期胃癌、早期胃癌、异型增生和非肿瘤性)中,病变分类率为 89.7%,在浸润深度预测(黏膜局限或黏膜下侵犯)中为 89.2%(内部测试)。在性能验证中,CDSS 在四分类中的准确率为 81.5%,在二分类中的准确率为 86.4%(前瞻性多中心外部测试)。

结论

CDSS 证明了其在实时临床应用中的潜力,在胃病变的检测和分类方面具有较高的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验