Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
Ainex Corporation, Seoul, Republic of Korea.
Gastric Cancer. 2024 Sep;27(5):1088-1099. doi: 10.1007/s10120-024-01524-3. Epub 2024 Jul 2.
BACKGROUND: Accurate prediction of pathologic results for early gastric cancer (EGC) based on endoscopic findings is essential in deciding between endoscopic and surgical resection. This study aimed to develop an artificial intelligence (AI) model to assess comprehensive pathologic characteristics of EGC using white-light endoscopic images and videos. METHODS: To train the model, we retrospectively collected 4,336 images and prospectively included 153 videos from patients with EGC who underwent endoscopic or surgical resection. The performance of the model was tested and compared to that of 16 endoscopists (nine experts and seven novices) using a mutually exclusive set of 260 images and 10 videos. Finally, we conducted external validation using 436 images and 89 videos from another institution. RESULTS: After training, the model achieved predictive accuracies of 89.7% for undifferentiated histology, 88.0% for submucosal invasion, 87.9% for lymphovascular invasion (LVI), and 92.7% for lymph node metastasis (LNM), using endoscopic videos. The area under the curve values of the model were 0.992 for undifferentiated histology, 0.902 for submucosal invasion, 0.706 for LVI, and 0.680 for LNM in the test. In addition, the model showed significantly higher accuracy than the experts in predicting undifferentiated histology (92.7% vs. 71.6%), submucosal invasion (87.3% vs. 72.6%), and LNM (87.7% vs. 72.3%). The external validation showed accuracies of 75.6% and 71.9% for undifferentiated histology and submucosal invasion, respectively. CONCLUSIONS: AI may assist endoscopists with high predictive performance for differentiation status and invasion depth of EGC. Further research is needed to improve the detection of LVI and LNM.
背景:基于内镜表现准确预测早期胃癌(EGC)的病理结果对于决定内镜或手术切除至关重要。本研究旨在开发一种人工智能(AI)模型,使用白光内镜图像和视频评估 EGC 的综合病理特征。
方法:为了训练模型,我们回顾性地收集了 4336 张图像,并前瞻性地纳入了 153 张来自接受内镜或手术切除的 EGC 患者的视频。使用互斥的 260 张图像和 10 个视频来测试和比较模型与 16 名内镜医生(9 名专家和 7 名新手)的性能。最后,我们使用另一家机构的 436 张图像和 89 个视频进行了外部验证。
结果:经过训练,该模型在内镜视频中对未分化组织学、黏膜下浸润、淋巴管血管侵犯(LVI)和淋巴结转移(LNM)的预测准确率分别达到 89.7%、88.0%、87.9%和 92.7%。模型在测试中的曲线下面积值分别为 0.992 用于未分化组织学、0.902 用于黏膜下浸润、0.706 用于 LVI 和 0.680 用于 LNM。此外,该模型在预测未分化组织学(92.7%对 71.6%)、黏膜下浸润(87.3%对 72.6%)和 LNM(87.7%对 72.3%)方面的准确率明显高于专家。外部验证显示未分化组织学和黏膜下浸润的准确率分别为 75.6%和 71.9%。
结论:AI 可能有助于内镜医生对 EGC 的分化状态和浸润深度进行高预测性能的预测。需要进一步研究以提高 LVI 和 LNM 的检测能力。
World J Gastroenterol. 2019-9-21
World J Gastroenterol. 2015-10-21
Ann Surg Oncol. 2018-12-18
Tomography. 2024-11-18
Cancers (Basel). 2023-6-7
Sci Rep. 2021-11-24