文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种通过内镜图像分析预测早期胃癌综合病理结果的人工智能系统(附有视频)。

An artificial intelligence system for comprehensive pathologic outcome prediction in early gastric cancer through endoscopic image analysis (with video).

机构信息

Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.

Ainex Corporation, Seoul, Republic of Korea.

出版信息

Gastric Cancer. 2024 Sep;27(5):1088-1099. doi: 10.1007/s10120-024-01524-3. Epub 2024 Jul 2.


DOI:10.1007/s10120-024-01524-3
PMID:38954175
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11335909/
Abstract

BACKGROUND: Accurate prediction of pathologic results for early gastric cancer (EGC) based on endoscopic findings is essential in deciding between endoscopic and surgical resection. This study aimed to develop an artificial intelligence (AI) model to assess comprehensive pathologic characteristics of EGC using white-light endoscopic images and videos. METHODS: To train the model, we retrospectively collected 4,336 images and prospectively included 153 videos from patients with EGC who underwent endoscopic or surgical resection. The performance of the model was tested and compared to that of 16 endoscopists (nine experts and seven novices) using a mutually exclusive set of 260 images and 10 videos. Finally, we conducted external validation using 436 images and 89 videos from another institution. RESULTS: After training, the model achieved predictive accuracies of 89.7% for undifferentiated histology, 88.0% for submucosal invasion, 87.9% for lymphovascular invasion (LVI), and 92.7% for lymph node metastasis (LNM), using endoscopic videos. The area under the curve values of the model were 0.992 for undifferentiated histology, 0.902 for submucosal invasion, 0.706 for LVI, and 0.680 for LNM in the test. In addition, the model showed significantly higher accuracy than the experts in predicting undifferentiated histology (92.7% vs. 71.6%), submucosal invasion (87.3% vs. 72.6%), and LNM (87.7% vs. 72.3%). The external validation showed accuracies of 75.6% and 71.9% for undifferentiated histology and submucosal invasion, respectively. CONCLUSIONS: AI may assist endoscopists with high predictive performance for differentiation status and invasion depth of EGC. Further research is needed to improve the detection of LVI and LNM.

摘要

背景:基于内镜表现准确预测早期胃癌(EGC)的病理结果对于决定内镜或手术切除至关重要。本研究旨在开发一种人工智能(AI)模型,使用白光内镜图像和视频评估 EGC 的综合病理特征。

方法:为了训练模型,我们回顾性地收集了 4336 张图像,并前瞻性地纳入了 153 张来自接受内镜或手术切除的 EGC 患者的视频。使用互斥的 260 张图像和 10 个视频来测试和比较模型与 16 名内镜医生(9 名专家和 7 名新手)的性能。最后,我们使用另一家机构的 436 张图像和 89 个视频进行了外部验证。

结果:经过训练,该模型在内镜视频中对未分化组织学、黏膜下浸润、淋巴管血管侵犯(LVI)和淋巴结转移(LNM)的预测准确率分别达到 89.7%、88.0%、87.9%和 92.7%。模型在测试中的曲线下面积值分别为 0.992 用于未分化组织学、0.902 用于黏膜下浸润、0.706 用于 LVI 和 0.680 用于 LNM。此外,该模型在预测未分化组织学(92.7%对 71.6%)、黏膜下浸润(87.3%对 72.6%)和 LNM(87.7%对 72.3%)方面的准确率明显高于专家。外部验证显示未分化组织学和黏膜下浸润的准确率分别为 75.6%和 71.9%。

结论:AI 可能有助于内镜医生对 EGC 的分化状态和浸润深度进行高预测性能的预测。需要进一步研究以提高 LVI 和 LNM 的检测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca39/11335909/27e357b57eef/10120_2024_1524_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca39/11335909/e6dcd669c1a5/10120_2024_1524_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca39/11335909/3e0efecdfb19/10120_2024_1524_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca39/11335909/15dbfbf43091/10120_2024_1524_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca39/11335909/27e357b57eef/10120_2024_1524_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca39/11335909/e6dcd669c1a5/10120_2024_1524_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca39/11335909/3e0efecdfb19/10120_2024_1524_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca39/11335909/15dbfbf43091/10120_2024_1524_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca39/11335909/27e357b57eef/10120_2024_1524_Fig4_HTML.jpg

相似文献

[1]
An artificial intelligence system for comprehensive pathologic outcome prediction in early gastric cancer through endoscopic image analysis (with video).

Gastric Cancer. 2024-9

[2]
Risk factors of lymph node metastasis or lymphovascular invasion for early gastric cancer: a practical and effective predictive model based on international multicenter data.

BMC Cancer. 2019-11-6

[3]
Feasibility of endoscopic treatment and predictors of lymph node metastasis in early gastric cancer.

World J Gastroenterol. 2019-9-21

[4]
Prediction of the indication criteria for endoscopic resection of early gastric cancer.

World J Gastroenterol. 2015-10-21

[5]
Indication for endoscopic treatment based on the risk of lymph node metastasis in patients with undifferentiated early gastric cancer.

Asian J Surg. 2020-1-18

[6]
Feasibility of Endoscopic Resection in Early Gastric Cancer with Lymphovascular Invasion.

Ann Surg Oncol. 2018-12-18

[7]
The Role of an Undifferentiated Component in Submucosal Invasion and Submucosal Invasion Depth After Endoscopic Submucosal Dissection for Early Gastric Cancer.

Digestion. 2018-6-5

[8]
Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy.

Gastrointest Endosc. 2018-11-16

[9]
Additive lymph node dissection may be necessary in minute submucosal cancer of the stomach after endoscopic resection.

Ann Surg Oncol. 2011-10-1

[10]
Factors related to lymph node metastasis and the feasibility of endoscopic mucosal resection for treating poorly differentiated adenocarcinoma of the stomach.

Endoscopy. 2008-1

引用本文的文献

[1]
Artificial intelligence-based marks detection and incision guide line prediction model in esophageal endoscopic submucosal dissection: a multicenter study (with video).

Surg Endosc. 2025-6-20

[2]
Evolving and Novel Applications of Artificial Intelligence in Abdominal Imaging.

Tomography. 2024-11-18

[3]
Identification and validation of serum MUC17 as a non-invasive early warning biomarker for screening of gastric intraepithelial neoplasia.

Transl Oncol. 2025-1

本文引用的文献

[1]
Decision to perform additional surgery after non-curative endoscopic submucosal dissection for gastric cancer based on the risk of lymph node metastasis: a long-term follow-up study.

Surg Endosc. 2023-10

[2]
The Role of Artificial Intelligence in Gastric Cancer: Surgical and Therapeutic Perspectives: A Comprehensive Review.

J Gastric Cancer. 2023-7

[3]
Endoscopic Resection of Early Gastric Cancer and Pre-Malignant Gastric Lesions.

Cancers (Basel). 2023-6-7

[4]
Deep learning-based clinical decision support system for gastric neoplasms in real-time endoscopy: development and validation study.

Endoscopy. 2023-8

[5]
Korean Practice Guidelines for Gastric Cancer 2022: An Evidence-based, Multidisciplinary Approach.

J Gastric Cancer. 2023-1

[6]
An Optimal Artificial Intelligence System for Real-Time Endoscopic Prediction of Invasion Depth in Early Gastric Cancer.

Cancers (Basel). 2022-12-5

[7]
Cooperation between artificial intelligence and endoscopists for diagnosing invasion depth of early gastric cancer.

Gastric Cancer. 2023-1

[8]
A nomogram to predict risk of lymph node metastasis in early gastric cancer.

Sci Rep. 2021-11-24

[9]
Application of convolutional neural networks for evaluating the depth of invasion of early gastric cancer based on endoscopic images.

J Gastroenterol Hepatol. 2022-2

[10]
Nomograms for Predicting the Lymph Node Metastasis in Early Gastric Cancer by Gender: A Retrospective Multicentric Study.

Front Oncol. 2021-9-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索