超越生物标志物:机器学习驱动的多组学在胃癌个性化医疗中的应用
Beyond Biomarkers: Machine Learning-Driven Multiomics for Personalized Medicine in Gastric Cancer.
作者信息
Ma Dongheng, Fan Canfeng, Sano Tomoya, Kawabata Kyoka, Nishikubo Hinano, Imanishi Daiki, Sakuma Takashi, Maruo Koji, Yamamoto Yurie, Matsuoka Tasuku, Yashiro Masakazu
机构信息
Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
Cancer Center for Translational Research, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
出版信息
J Pers Med. 2025 Apr 24;15(5):166. doi: 10.3390/jpm15050166.
Gastric cancer (GC) remains one of the leading causes of cancer-related mortality worldwide, with most cases diagnosed at advanced stages. Traditional biomarkers provide only partial insights into GC's heterogeneity. Recent advances in machine learning (ML)-driven multiomics technologies, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, pathomics, and radiomics, have facilitated a deeper understanding of GC by integrating molecular and imaging data. In this review, we summarize the current landscape of ML-based multiomics integration for GC, highlighting its role in precision diagnosis, prognosis prediction, and biomarker discovery for achieving personalized medicine.
胃癌(GC)仍然是全球癌症相关死亡的主要原因之一,大多数病例在晚期才被诊断出来。传统生物标志物只能部分洞察胃癌的异质性。机器学习(ML)驱动的多组学技术的最新进展,包括基因组学、表观基因组学、转录组学、蛋白质组学、代谢组学、病理组学和放射组学,通过整合分子和影像数据,促进了对胃癌更深入的理解。在这篇综述中,我们总结了基于机器学习的胃癌多组学整合的现状,强调其在精准诊断、预后预测和生物标志物发现以实现个性化医疗方面的作用。