文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

ZBP1 通过端粒到线粒体信号传导介导复制危机。

Telomere-to-mitochondria signalling by ZBP1 mediates replicative crisis.

机构信息

The Salk Institute for Biological Studies, La Jolla, CA, USA.

Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa (FCUL), Lisbon, Portugal.

出版信息

Nature. 2023 Feb;614(7949):767-773. doi: 10.1038/s41586-023-05710-8. Epub 2023 Feb 8.


DOI:10.1038/s41586-023-05710-8
PMID:36755096
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9946831/
Abstract

Cancers arise through the accumulation of genetic and epigenetic alterations that enable cells to evade telomere-based proliferative barriers and achieve immortality. One such barrier is replicative crisis-an autophagy-dependent program that eliminates checkpoint-deficient cells with unstable telomeres and other cancer-relevant chromosomal aberrations. However, little is known about the molecular events that regulate the onset of this important tumour-suppressive barrier. Here we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as a regulator of the crisis program. A crisis-associated isoform of ZBP1 is induced by the cGAS-STING DNA-sensing pathway, but reaches full activation only when associated with telomeric-repeat-containing RNA (TERRA) transcripts that are synthesized from dysfunctional telomeres. TERRA-bound ZBP1 oligomerizes into filaments on the outer mitochondrial membrane of a subset of mitochondria, where it activates the innate immune adapter protein mitochondrial antiviral-signalling protein (MAVS). We propose that these oligomerization properties of ZBP1 serve as a signal amplification mechanism, where few TERRA-ZBP1 interactions are sufficient to launch a detrimental MAVS-dependent interferon response. Our study reveals a mechanism for telomere-mediated tumour suppression, whereby dysfunctional telomeres activate innate immune responses through mitochondrial TERRA-ZBP1 complexes to eliminate cells destined for neoplastic transformation.

摘要

癌症是通过遗传和表观遗传改变的积累而产生的,这些改变使细胞能够逃避基于端粒的增殖障碍并实现永生。其中一个障碍是复制危机——一种自噬依赖性程序,它消除了具有不稳定端粒和其他与癌症相关的染色体畸变的检查点缺陷细胞。然而,对于调节这种重要肿瘤抑制屏障起始的分子事件知之甚少。在这里,我们确定了先天免疫传感器 Z-DNA 结合蛋白 1(ZBP1)是危机程序的调节剂。一种与危机相关的 ZBP1 同工型是由 cGAS-STING DNA 感应途径诱导的,但只有与从功能失调的端粒合成的含有端粒重复序列的 RNA(TERRA)转录本结合时,才会完全激活。与 TERRA 结合的 ZBP1 在一部分线粒体的外线粒体膜上寡聚形成纤维,在那里它激活先天免疫衔接蛋白线粒体抗病毒信号蛋白(MAVS)。我们提出,ZBP1 的这些寡聚化特性可作为信号放大机制,其中少量的 TERRA-ZBP1 相互作用足以引发有害的依赖 MAVS 的干扰素反应。我们的研究揭示了一种端粒介导的肿瘤抑制机制,其中功能失调的端粒通过线粒体 TERRA-ZBP1 复合物激活先天免疫反应,以消除注定发生癌变的细胞。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/ed866a54a0de/41586_2023_5710_Fig17_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/e918d5997190/41586_2023_5710_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/634050ee9d55/41586_2023_5710_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/447569c4fd07/41586_2023_5710_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/e490ac9df526/41586_2023_5710_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/2cf056465fe3/41586_2023_5710_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/9dcb27c988d6/41586_2023_5710_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/6f4cc87bc02d/41586_2023_5710_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/1c1e7cfa4dc7/41586_2023_5710_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/088ef7587b31/41586_2023_5710_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/7eeafae85ec4/41586_2023_5710_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/99b762359df3/41586_2023_5710_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/40cea5c58abe/41586_2023_5710_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/f4d020caf4c4/41586_2023_5710_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/8c762e2c5f06/41586_2023_5710_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/9ddfae55ad28/41586_2023_5710_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/1f8916e3e403/41586_2023_5710_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/ed866a54a0de/41586_2023_5710_Fig17_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/e918d5997190/41586_2023_5710_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/634050ee9d55/41586_2023_5710_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/447569c4fd07/41586_2023_5710_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/e490ac9df526/41586_2023_5710_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/2cf056465fe3/41586_2023_5710_Fig5_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/9dcb27c988d6/41586_2023_5710_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/6f4cc87bc02d/41586_2023_5710_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/1c1e7cfa4dc7/41586_2023_5710_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/088ef7587b31/41586_2023_5710_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/7eeafae85ec4/41586_2023_5710_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/99b762359df3/41586_2023_5710_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/40cea5c58abe/41586_2023_5710_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/f4d020caf4c4/41586_2023_5710_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/8c762e2c5f06/41586_2023_5710_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/9ddfae55ad28/41586_2023_5710_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/1f8916e3e403/41586_2023_5710_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94e3/9946831/ed866a54a0de/41586_2023_5710_Fig17_ESM.jpg

相似文献

[1]
Telomere-to-mitochondria signalling by ZBP1 mediates replicative crisis.

Nature. 2023-2

[2]
Ends end it via mitochondria: A telomere-dependent tumor suppressive mechanism acts during replicative crisis.

Mol Cell. 2023-4-6

[3]
The RNA-binding motif protein 14 regulates telomere integrity at the interface of TERRA and telomeric R-loops.

Nucleic Acids Res. 2023-12-11

[4]
Live-cell imaging reveals the dynamics and function of single-telomere TERRA molecules in cancer cells.

RNA Biol. 2018-4-16

[5]
Regulation of TERRA on telomeric and mitochondrial functions in IPF pathogenesis.

BMC Pulm Med. 2017-12-2

[6]
Apoptosis dysfunction: unravelling the interplay between ZBP1 activation and viral invasion in innate immune responses.

Cell Commun Signal. 2024-2-24

[7]
Cooperative sensing of mitochondrial DNA by ZBP1 and cGAS promotes cardiotoxicity.

Cell. 2023-7-6

[8]
TERRA transcription destabilizes telomere integrity to initiate break-induced replication in human ALT cells.

Nat Commun. 2021-6-18

[9]
Telomeric repeat-containing RNA/G-quadruplex-forming sequences cause genome-wide alteration of gene expression in human cancer cells in vivo.

Nucleic Acids Res. 2015-2-27

[10]
TERRA and Telomere Maintenance in the Yeast .

Genes (Basel). 2023-2-28

引用本文的文献

[1]
RPA1 protects DNA damage-induced PANoptosis in limb development.

Sci Adv. 2025-8-22

[2]
Telomere Crisis Shapes Cancer Evolution.

Cold Spring Harb Perspect Biol. 2025-8-11

[3]
Biological and clinical implications of a model of surveillance immunity.

J Clin Invest. 2025-8-1

[4]
Exploring the Importance of ZBP1 in Sepsis: A Mini Review on It's Mechanisms and Progress.

J Inflamm Res. 2025-7-25

[5]
Autocrine interferon poisoning mediates ADAR1-dependent synthetic lethality in BRCA1/2-mutant cancers.

Nat Commun. 2025-7-29

[6]
The interplay between senescence, inflammation, and the immune system.

Genes Dev. 2025-8-1

[7]
Telomeres at the nexus of aging, tumor suppression, and inflammation: toward an understanding beyond senescence.

Genes Dev. 2025-8-1

[8]
Recent advances and applications of mitochondria in tumors and inflammation.

J Transl Med. 2025-7-10

[9]
Telomeric repeat-containing RNA increases in aged human cells.

Nucleic Acids Res. 2025-7-8

[10]
TERRA R-loops trigger a switch in telomere maintenance towards break-induced replication and PRIMPOL-dependent repair.

EMBO J. 2025-7-7

本文引用的文献

[1]
The Zα2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development.

J Biol Chem. 2020-4-29

[2]
Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation.

Nature. 2020-3-25

[3]
Gut stem cell necroptosis by genome instability triggers bowel inflammation.

Nature. 2020-3-25

[4]
Influenza Virus Z-RNAs Induce ZBP1-Mediated Necroptosis.

Cell. 2020-3-19

[5]
A protein-interaction network of interferon-stimulated genes extends the innate immune system landscape.

Nat Immunol. 2019-3-4

[6]
Autophagic cell death restricts chromosomal instability during replicative crisis.

Nature. 2019-1-23

[7]
Optimized base editors enable efficient editing in cells, organoids and mice.

Nat Biotechnol. 2018-7-3

[8]
Long Noncoding RNA ITPRIP-1 Positively Regulates the Innate Immune Response through Promotion of Oligomerization and Activation of MDA5.

J Virol. 2018-8-16

[9]
Self-Recognition of an Inducible Host lncRNA by RIG-I Feedback Restricts Innate Immune Response.

Cell. 2018-4-26

[10]
ZBP1: Innate Sensor Regulating Cell Death and Inflammation.

Trends Immunol. 2017-11-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索