Cersonsky Rose K, Pakhnova Maria, Engel Edgar A, Ceriotti Michele
Laboratory of Computational Science and Modeling (COSMO), École Polytechnique Fédérale de Lausanne Lausanne Switzerland
TCM Group, Trinity College, Cambridge University Cambridge UK.
Chem Sci. 2023 Jan 16;14(5):1272-1285. doi: 10.1039/d2sc06198h. eCollection 2023 Feb 1.
Due to the subtle balance of intermolecular interactions that govern structure-property relations, predicting the stability of crystal structures formed from molecular building blocks is a highly non-trivial scientific problem. A particularly active and fruitful approach involves classifying the different combinations of interacting chemical moieties, as understanding the relative energetics of different interactions enables the design of molecular crystals and fine-tuning of their stabilities. While this is usually performed based on the empirical observation of the most commonly encountered motifs in known crystal structures, we propose to apply a combination of supervised and unsupervised machine-learning techniques to automate the construction of an extensive library of molecular building blocks. We introduce a structural descriptor tailored to the prediction of the binding (lattice) energy and apply it to a curated dataset of organic crystals, exploiting its atom-centered nature to obtain a data-driven assessment of the contribution of different chemical groups to the lattice energy of the crystal. We then interpret this library using a low-dimensional representation of the structure-energy landscape and discuss selected examples of the insights into crystal engineering that can be extracted from this analysis, providing a complete database to guide the design of molecular materials.
由于决定结构-性质关系的分子间相互作用存在微妙平衡,预测由分子构建单元形成的晶体结构的稳定性是一个极具挑战性的科学问题。一种特别活跃且富有成效的方法是对相互作用的化学基团的不同组合进行分类,因为了解不同相互作用的相对能量有助于分子晶体的设计及其稳定性的微调。虽然这通常是基于对已知晶体结构中最常见基序的经验观察来进行的,但我们建议应用监督式和无监督式机器学习技术的组合,以自动构建一个广泛的分子构建单元库。我们引入了一种专门用于预测结合(晶格)能的结构描述符,并将其应用于一个经过整理的有机晶体数据集,利用其以原子为中心的性质,以数据驱动的方式评估不同化学基团对晶体晶格能的贡献。然后,我们使用结构-能量景观的低维表示来解释这个库,并讨论从该分析中可以提取的晶体工程见解的选定示例,提供一个完整的数据库来指导分子材料的设计。