Suppr超能文献

用于分子晶体结构-能量-性质图景的机器学习

Machine learning for the structure-energy-property landscapes of molecular crystals.

作者信息

Musil Félix, De Sandip, Yang Jack, Campbell Joshua E, Day Graeme M, Ceriotti Michele

机构信息

National Center for Computational Design and Discovery of Novel Materials (MARVEL) , Laboratory of Computational Science and Modelling , Institute of Materials , Ecole Polytechnique Federale de Lausanne , Lausanne , Switzerland . Email:

School of Chemistry , University of Southampton , Highfield , Southampton , UK.

出版信息

Chem Sci. 2017 Dec 12;9(5):1289-1300. doi: 10.1039/c7sc04665k. eCollection 2018 Feb 7.

Abstract

Molecular crystals play an important role in several fields of science and technology. They frequently crystallize in different polymorphs with substantially different physical properties. To help guide the synthesis of candidate materials, atomic-scale modelling can be used to enumerate the stable polymorphs and to predict their properties, as well as to propose heuristic rules to rationalize the correlations between crystal structure and materials properties. Here we show how a recently-developed machine-learning (ML) framework can be used to achieve inexpensive and accurate predictions of the stability and properties of polymorphs, and a data-driven classification that is less biased and more flexible than typical heuristic rules. We discuss, as examples, the lattice energy and property landscapes of pentacene and two azapentacene isomers that are of interest as organic semiconductor materials. We show that we can estimate force field or DFT lattice energies with sub-kJ mol accuracy, using only a few hundred reference configurations, and reduce by a factor of ten the computational effort needed to predict charge mobility in the crystal structures. The automatic structural classification of the polymorphs reveals a more detailed picture of molecular packing than that provided by conventional heuristics, and helps disentangle the role of hydrogen bonded and π-stacking interactions in determining molecular self-assembly. This observation demonstrates that ML is not just a black-box scheme to interpolate between reference calculations, but can also be used as a tool to gain intuitive insights into structure-property relations in molecular crystal engineering.

摘要

分子晶体在多个科学技术领域中发挥着重要作用。它们常常以具有显著不同物理性质的不同多晶型物形式结晶。为了帮助指导候选材料的合成,原子尺度建模可用于列举稳定的多晶型物并预测其性质,还可提出启发式规则以合理化晶体结构与材料性质之间的相关性。在此,我们展示了如何使用最近开发的机器学习(ML)框架来实现对多晶型物稳定性和性质的低成本且准确的预测,以及一种数据驱动的分类方法,该方法比典型的启发式规则偏差更小且更灵活。作为示例,我们讨论了并五苯以及两种氮杂并五苯异构体的晶格能和性质态势,它们作为有机半导体材料备受关注。我们表明,仅使用几百个参考构型,就能以亚千焦每摩尔的精度估算力场或密度泛函理论(DFT)晶格能,并将预测晶体结构中电荷迁移率所需的计算量减少到十分之一。多晶型物的自动结构分类揭示了比传统启发式方法更详细的分子堆积情况,并有助于厘清氢键和π堆积相互作用在决定分子自组装中的作用。这一观察结果表明,机器学习不仅仅是一种在参考计算之间进行插值的黑箱方案,还可以用作一种工具,以直观地洞察分子晶体工程中的结构 - 性质关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54b6/5887104/c13819350c2d/c7sc04665k-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验