Karunarathna Menisha S, Maladeniya Charini P, Lauer Moira K, Tennyson Andrew G, Smith Rhett C
Department of Chemistry, Clemson University Clemson South Carolina 29634 USA
Department of Materials Science and Engineering, Clemson University Clemson South Carolina 29634 USA.
RSC Adv. 2023 Jan 20;13(5):3234-3240. doi: 10.1039/d2ra07082k. eCollection 2023 Jan 18.
Productive utilization of lignocellulosic biomass is critical to the continued advancement of human civilization. Whereas the cellulose component can be efficiently upconverted to automotive fuel-grade ethanol, the lack of upconversion methods for the lignin component constitutes one of the grand challenges facing science. Lignin is an attractive feedstock for structural applications, in which its highly-crosslinked architecture can endow composite structures with high strengths. Prior work suggests that high-strength composites can be prepared by the reaction of olefin-modified lignin with sulfur. Those studies were limited to ≤5 wt% lignin, due to phase-separation of hydrophilic lignin from hydrophobic sulfur matrices. Herein we report a protocol to increase lignin hydrophobicity and thus its incorporation into sulfur-rich materials. This improvement is affected by esterifying lignin with oleic acid prior to its reaction with sulfur. This approach allowed preparation of esterified lignin-sulfur (ELS) composites comprising up to 20 wt% lignin. Two reaction temperatures were employed such that the reaction of ELS with sulfur at 180 °C would only produce S-C bonds at olefinic sites, whereas the reaction at 230 °C would produce C-S bonds at both olefin and aryl sites. Mechanistic analyses and microstructural characterization elucidated two ELS composites having compressive strength values (>20 MPa), exceeding the values observed with ordinary Portland cements. Consequently, this new method represents a way to improve lignin utilization to produce durable composites that represent sustainable alternatives to Portland cements.
木质纤维素生物质的有效利用对人类文明的持续进步至关重要。虽然纤维素成分可以有效地升级转化为汽车燃料级乙醇,但缺乏木质素成分的升级转化方法是科学界面临的重大挑战之一。木质素是一种用于结构应用的有吸引力的原料,其高度交联的结构可以赋予复合结构高强度。先前的研究表明,通过烯烃改性木质素与硫的反应可以制备高强度复合材料。由于亲水性木质素与疏水性硫基体的相分离,这些研究仅限于木质素含量≤5 wt%。在此,我们报告了一种提高木质素疏水性从而将其掺入富硫材料中的方法。这种改进是通过在木质素与硫反应之前用油酸酯化木质素来实现的。这种方法使得能够制备包含高达20 wt%木质素的酯化木质素-硫(ELS)复合材料。采用了两个反应温度,使得ELS与硫在180°C下反应只会在烯烃位点产生S-C键,而在230°C下反应会在烯烃和芳基位点都产生C-S键。机理分析和微观结构表征表明,两种ELS复合材料的抗压强度值(>20 MPa)超过了普通波特兰水泥的抗压强度值。因此,这种新方法代表了一种提高木质素利用率以生产耐用复合材料的途径,这些复合材料是波特兰水泥的可持续替代品。