Suppr超能文献

以锌作为化学改性剂的新型第三代相变材料的热分析

Thermal analysis of novel third-generation phase-change materials with zinc as a chemical modifier.

作者信息

Saraswat Vishnu, Pal Shiv Kumar, Mehta N, Kumar Arun, Imran M M A

机构信息

Physics Department, Banaras Hindu University Varanasi-221005 India

Physics Department, IIT Roorkee Roorkee-247667 India.

出版信息

RSC Adv. 2023 Jan 26;13(6):3602-3611. doi: 10.1039/d2ra07041c. eCollection 2023 Jan 24.

Abstract

The thermal analysis in the present work is done to analyze the glass/crystal phase transformation in a newly synthesized glassy system (, glassy SeTeSnZn alloys) consisting of chalcogenides Se and Te as major elements, Sn as a third element of the parent alloy and Zn as a chemical modifier. The role of increasing the Zn concentration at the cost of Se has been understood by correlating the kinematics of structural relaxation during the glass transition phenomenon and devitrification during the crystallization phenomenon in the chalcogenide glasses (ChGs) of the quaternary STSZ [, Se Zn TeSn (0 ≤ ≤ 6)] system and their different physicochemical properties. A noticeable rise in the crystallization rate is observed after the addition of Zn in the parent SeTeSn glass. With the rise in the zinc content, the values of average heat of atomization and overall mean bond energy are found to be decreased with the decrease in cohesive energy of samples. An inverse correlation is observed between the thermal stability parameter and the enthalpy released during the glass/crystalline phase transformation.

摘要

本工作中的热分析旨在研究一种新合成的玻璃体系(玻璃态SeTeSnZn合金)中的玻璃/晶相转变,该体系以硫族元素Se和Te为主要元素,Sn作为母合金的第三元素,Zn作为化学改性剂。通过关联四元STSZ体系(Se Zn TeSn,0 ≤ ≤ 6)硫族化物玻璃(ChGs)在玻璃转变现象期间的结构弛豫运动学和结晶现象期间的析晶过程,以及它们不同的物理化学性质,理解了以Se为代价增加Zn浓度的作用。在母合金SeTeSn玻璃中添加Zn后,观察到结晶速率显著提高。随着锌含量的增加,发现平均雾化热和总平均键能的值随着样品内聚能的降低而降低。在热稳定性参数与玻璃/晶相转变过程中释放的焓之间观察到负相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6501/9890671/4fd399c544a0/d2ra07041c-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验