Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran.
Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
Anal Methods. 2023 Mar 2;15(9):1123-1134. doi: 10.1039/d2ay01797k.
Catecholamine neurotransmitters (CNs), such as dopamine (DA), epinephrine (EP), norepinephrine (NEP), and levodopa (LD), are recognized as the primary biomarkers of a variety of neurological illnesses. Therefore, simultaneous monitoring of these biomarkers is highly recommended for clinical diagnosis and treatment. In this study, a high-performance colorimetric artificial tongue has been proposed for the multiplex detection of CNs. Different aggregation behaviors of gold nanoparticles in the presence of CNs under various buffering conditions generate unique fingerprint response patterns. Under various buffering conditions, the distinct acidity constants of CNs, and consequently their predominant species at a given pH, drive the aggregation of gold nanoparticles (AuNPs). The utilization of machine learning algorithms in this design enables classification and quantification of CNs in various samples. The response profile of the array was analyzed using the linear discriminant analysis algorithm for classification of CNs. This colorimetric sensor array is capable of accurately distinguishing between individual neurotransmitters and their combinations. Partial least squares regression was also applied for quantitation purposes. The obtained analytical figures of merit (FOMs) and linear ranges of 0.6-9 μM ( = 0.99) for DA, 0.1-10 μM ( = 0.99) for EP, 0.1-9 μM ( = 0.99) for NEP and 1-70 μM ( = 0.99) for LD demonstrated the potential applicability of the developed sensor array in precise and accurate determination of CNs. Finally, the feasibility of the array was validated in human urine samples as a complex biological fluid with LODs of 0.3, 0.5, 0.2, and 1.9 μM for DA, EP, NEP, and LD, respectively.
儿茶酚胺神经递质(CNs),如多巴胺(DA)、肾上腺素(EP)、去甲肾上腺素(NEP)和左旋多巴(LD),被认为是多种神经疾病的主要生物标志物。因此,强烈建议同时监测这些生物标志物,以用于临床诊断和治疗。在这项研究中,提出了一种高性能比色人工舌,用于 CNs 的多重检测。在不同的缓冲条件下,CNs 的存在会导致金纳米粒子发生不同的聚集行为,从而产生独特的指纹响应模式。在不同的缓冲条件下,CNs 的不同酸度常数以及它们在给定 pH 值下的主要物种,会促使金纳米粒子(AuNPs)聚集。在这种设计中,机器学习算法的应用可以实现对不同样品中 CNs 的分类和定量。使用线性判别分析算法对阵列的响应谱进行分析,以实现对 CNs 的分类。该比色传感器阵列能够准确地区分单个神经递质及其组合。还应用偏最小二乘回归进行定量目的。获得的分析性能指标(FOMs)和线性范围为 0.6-9 μM(=0.99)用于 DA、0.1-10 μM(=0.99)用于 EP、0.1-9 μM(=0.99)用于 NEP 和 1-70 μM(=0.99)用于 LD,表明开发的传感器阵列在 CNs 的精确和准确测定中具有潜在的适用性。最后,通过将阵列应用于人尿液样本中,验证了其在复杂生物流体中的可行性,其对 DA、EP、NEP 和 LD 的检测限分别为 0.3、0.5、0.2 和 1.9 μM。