Suppr超能文献

基于机器学习的人工智能评估生物材料诱导的干细胞谱系命运。

Assessing Biomaterial-Induced Stem Cell Lineage Fate by Machine Learning-Based Artificial Intelligence.

机构信息

Department of Dental Materials and Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China.

National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China.

出版信息

Adv Mater. 2023 May;35(19):e2210637. doi: 10.1002/adma.202210637. Epub 2023 Mar 18.

Abstract

Current functional assessment of biomaterial-induced stem cell lineage fate in vitro mainly relies on biomarker-dependent methods with limited accuracy and efficiency. Here a "Mesenchymal stem cell Differentiation Prediction (MeD-P)" framework for biomaterial-induced cell lineage fate prediction is reported. MeD-P contains a cell-type-specific gene expression profile as a reference by integrating public RNA-seq data related to tri-lineage differentiation (osteogenesis, chondrogenesis, and adipogenesis) of human mesenchymal stem cells (hMSCs) and a predictive model for classifying hMSCs differentiation lineages using the k-nearest neighbors (kNN) strategy. It is shown that MeD-P exhibits an overall accuracy of 90.63% on testing datasets, which is significantly higher than the model constructed based on canonical marker genes (80.21%). Moreover, evaluations of multiple biomaterials show that MeD-P provides accurate prediction of lineage fate on different types of biomaterials as early as the first week of hMSCs culture. In summary, it is demonstrated that MeD-P is an efficient and accurate strategy for stem cell lineage fate prediction and preliminary biomaterial functional evaluation.

摘要

目前,体外评估生物材料诱导干细胞谱系命运主要依赖于基于生物标志物的方法,但这些方法的准确性和效率有限。本文报道了一种用于生物材料诱导细胞谱系命运预测的“间充质干细胞分化预测(MeD-P)”框架。MeD-P 包含一个细胞类型特异性的基因表达谱作为参考,该参考整合了与人类间充质干细胞(hMSC)的三系分化(成骨、软骨和成脂分化)相关的公共 RNA-seq 数据,以及使用 k-最近邻(kNN)策略对 hMSC 分化谱系进行分类的预测模型。研究结果表明,MeD-P 在测试数据集上的总体准确率为 90.63%,明显高于基于经典标记基因构建的模型(80.21%)。此外,对多种生物材料的评估表明,MeD-P 早在 hMSC 培养的第一周就可以对不同类型的生物材料进行准确的谱系命运预测。总之,研究结果表明,MeD-P 是一种高效、准确的干细胞谱系命运预测和初步生物材料功能评估策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验