Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
Angew Chem Int Ed Engl. 2023 Apr 17;62(17):e202218507. doi: 10.1002/anie.202218507. Epub 2023 Mar 13.
Compartmentalization is key to many cellular processes and a critical bottleneck of any minimal life approach. In cells, a complex chemistry is responsible for bringing together or separating biomolecules at the right place at the right time. Lipids, nucleic acids and proteins self-organize, thereby creating boundaries, interfaces and specialized microenvironments. Exploiting reversible RNA-based liquid-liquid phase separation (LLPS) inside giant unilamellar vesicles (GUVs), we present an efficient system capable of propagating an RNA-based enzymatic reaction across a population of GUVs upon freezing-thawing (FT) temperature cycles. We report that compartmentalization in the condensed RNA-rich phase can accelerate such an enzymatic reaction. In the decondensed state, RNA substrates become homogeneously dispersed, enabling content exchange between vesicles during freeze-thawing. This work explores how a minimal reversible phase separation system in lipid vesicles could help to implement spatiotemporal control in cyclic processes, as required for minimal cells.
隔室化是许多细胞过程的关键,也是任何最小生命方法的关键瓶颈。在细胞中,复杂的化学物质负责在正确的时间和地点将生物分子聚集或分离。脂质、核酸和蛋白质自我组织,从而形成边界、界面和专门的微环境。利用巨大的单室囊泡(GUVs)内基于 RNA 的液-液相分离(LLPS)的可逆性,我们提出了一种有效的系统,能够在冷冻-解冻(FT)温度循环后,在 GUV 群体中传播基于 RNA 的酶反应。我们报告说,在浓缩的富含 RNA 的相中进行隔室化可以加速这种酶反应。在去浓缩状态下,RNA 底物均匀分散,使冷冻-解冻过程中囊泡之间能够进行内容交换。这项工作探索了脂质囊泡中最小的可逆相分离系统如何帮助在循环过程中实现时空控制,这是最小细胞所必需的。