Tang Xianglong, Wang Zhen, Xie Yandong, Liu Yuyang, Yang Kun, Li Taiping, Shen Hong, Zhao Mengjie, Jin Juan, Xiao Hong, Liu Hongyi, Gu Ning
Department of Neuro-Psychiatric Institute, The Affiliated Brain Hospital with Nanjing Medical University, Nanjing 210029, China.
Department of Neurosurgery, The Affiliated Brain Hospital with Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing 210029, China.
ACS Nano. 2023 Feb 28;17(4):4062-4076. doi: 10.1021/acsnano.3c00269. Epub 2023 Feb 9.
Radiotherapy-resistant glioblastoma (rrGBM) remains a significant clinical challenge because of high infiltrative growth characterized by activation of antiapoptotic signal transduction. Herein, we describe an efficiently biodegradable selenium-engineered mesoporous silica nanocapsule, initiated by high-energy X-ray irradiation and employed for at-site RNA interference (RNAi) to inhibit rrGBM invasion and achieve maximum therapeutic benefit. Our radiation-triggered RNAi nanocapsule showed high physiological stability, good blood-brain barrier transcytosis, and potent rrGBM accumulation. An intratumoral RNAi nanocapsule permitted low-dose X-ray radiation-triggered dissociation for cofilin-1 knockdown, inhibiting rrGBM infiltration. More importantly, tumor suppression was further amplified by electron-affinity aminoimidazole products converted from metronidazole polymers under X-ray radiation-exacerbated hypoxia, which sensitized cell apoptosis to ionizing radiation by fixing reactive oxygen species-induced DNA lesions. In vivo experiments confirmed that our RNAi nanocapsule reduced tumor growth and invasion, prolonging survival in an orthotopic rrGBM model. Generally, we present a promising radiosensitizer that would effectively improve rrGBM-patient outcomes with low-dose X-ray irradiation.
放疗抵抗性胶质母细胞瘤(rrGBM)仍然是一个重大的临床挑战,因为其具有以抗凋亡信号转导激活为特征的高度浸润性生长。在此,我们描述了一种高效可生物降解的硒工程化介孔二氧化硅纳米胶囊,它由高能X射线辐照引发,并用于原位RNA干扰(RNAi)以抑制rrGBM的侵袭并实现最大治疗效益。我们的辐射触发RNAi纳米胶囊表现出高生理稳定性、良好的血脑屏障转胞吞作用以及在rrGBM中的有效蓄积。瘤内RNAi纳米胶囊允许低剂量X射线辐射触发解离以敲低丝切蛋白-1,从而抑制rrGBM浸润。更重要的是,在X射线辐射加剧的缺氧条件下,甲硝唑聚合物转化而来的具有电子亲和力的氨基咪唑产物进一步增强了肿瘤抑制作用,其通过修复活性氧诱导的DNA损伤使细胞凋亡对电离辐射敏感。体内实验证实,我们的RNAi纳米胶囊减少了肿瘤生长和侵袭,延长了原位rrGBM模型的生存期。总体而言,我们提出了一种有前景的放射增敏剂,它能通过低剂量X射线辐照有效改善rrGBM患者的预后。
J Nanobiotechnology. 2023-7-5
J Control Release. 2018-11-5
J Control Release. 2016-8-31
Int J Mol Sci. 2025-6-18
Nanomedicine (Lond). 2025-6
Front Pharmacol. 2025-1-6
Nanomedicine (Lond). 2024
Biomedicines. 2024-8-11
Discov Oncol. 2024-8-12