Ajala Oluwaseyi Aderemi, Akinnawo Solomon Oluwaseun, Bamisaye Abayomi, Adedipe Demilade Tunrayo, Adesina Morenike Oluwabunmi, Okon-Akan Omolabake Abiodun, Adebusuyi Tosin Adewumi, Ojedokun Adedamola Titi, Adegoke Kayode Adesina, Bello Olugbenga Solomon
Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University 1-4-1, Kagamiyama Higashi-Hiroshima 739-8527 Japan.
Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology P. M. B. 4000 Ogbomoso Oyo State Nigeria.
RSC Adv. 2023 Feb 3;13(7):4678-4712. doi: 10.1039/d2ra06436g. eCollection 2023 Jan 31.
This study explores adsorptive removal measures to shed light on current water treatment innovations for kinetic/isotherm models and their applications to antibiotic pollutants using a broad range of biomass-based adsorbents. The structure, classifications, sources, distribution, and different techniques for the remediation of antibiotics are discussed. Unlike previous studies, a wide range of adsorbents are covered and adsorption of comprehensive classes of antibiotics onto biomass/biochar-based adsorbents are categorized as β-lactam, fluoroquinolone, sulfonamide, tetracycline, macrolides, chloramphenicol, antiseptic additives, glycosamides, reductase inhibitors, and multiple antibiotic systems. This allows for an assessment of their performance and an understanding of current research breakthroughs in applying various adsorbent materials for antibiotic removal. Distinct from other studies in the field, the theoretical basis of different isotherm and kinetics models and the corresponding experimental insights into their applications to antibiotics are discussed extensively, thereby identifying the associated strengths, limitations, and efficacy of kinetics and isotherms for describing the performances of the adsorbents. In addition, we explore the regeneration of adsorbents and the potential applications of the adsorbents in engineering. Lastly, scholars will be able to grasp the present resources employed and the future necessities for antibiotic wastewater remediation.
本研究探索吸附去除措施,以阐明当前用于动力学/等温线模型的水处理创新方法,以及使用多种生物质基吸附剂将其应用于抗生素污染物的情况。文中讨论了抗生素的结构、分类、来源、分布以及不同的修复技术。与以往的研究不同,本研究涵盖了广泛的吸附剂,并将各类抗生素在生物质/生物炭基吸附剂上的吸附分为β-内酰胺类、氟喹诺酮类、磺胺类、四环素类、大环内酯类、氯霉素类、防腐剂添加剂、糖胺类、还原酶抑制剂和多种抗生素系统。这有助于评估它们的性能,并了解目前在应用各种吸附材料去除抗生素方面的研究突破。与该领域的其他研究不同,本文广泛讨论了不同等温线和动力学模型的理论基础以及它们在抗生素应用方面相应的实验见解,从而确定了动力学和等温线在描述吸附剂性能方面的相关优势、局限性和有效性。此外,我们还探讨了吸附剂的再生及其在工程中的潜在应用。最后,学者们将能够掌握目前用于抗生素废水修复的资源以及未来的需求。