Suppr超能文献

关于聚集诱导发光(AIE)和氢键荧光复合材料的胶束形态及发光机制的计算与实验研究。

Computational and experimental studies on the micellar morphology and emission mechanisms of AIE and H-bonding fluorescent composites.

作者信息

Zhou Guangying, Cheng Xiaomeng, Yang Jian, Zhu Yanyan, Li Hongping

机构信息

Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou Henan 450001 China

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China.

出版信息

RSC Adv. 2023 Feb 6;13(7):4612-4622. doi: 10.1039/d2ra07900c. eCollection 2023 Jan 31.

Abstract

In this work, we use density functional theory (DFT) calculated competitive hydrogen bonds and dissipative particle dynamics (DPD) simulated micellar structural information to uncover the CO-expanded liquid (CXL)-aided self-assembled structure and emission mechanisms of the self-assembled fluorescent composites (SAFCs). Herein, the SAFCs are formed through the self assembly between diblock copolymer polystyrene--poly(4-vinylpyridine) (PS--P4VP) blend and the dye molecule 4-(9-(2-(4-hydroxyphenyl)ethynyl)-7,10-diphenylfluoranthen-8-yl)phenol (4) in CO-expanded toluene at 313.2 K and varied pressures. Firstly, from DPD simulation, we have demonstrated that the addition of CO to toluene favors both the expansion of the solvophobic P4VP phase and contraction of solvophilic PS chains, which facilitates the continuous morphological transitions of SAFCs from spherical micelles (3.0 MPa) through wormlike plus spherical micelles (4.0-4.8 MPa) to large vesicles (6.0-6.5 MPa) with pressure rise. Secondly, the DFT calculated bonding energies and IR spectra of the competitive hydrogen bonds help us to clarify the major type of hydrogen bonds determining the fluorescence (FL) performance of the SAFCs. Furthermore, we have revealed the SAFC emission mechanism the pressure-tunable changes in the aggregation degrees and amount of hydrogen bonds involving 4 and P4VP chains. This work provides a good understanding for the morphology-property control of the self-assembled polymer composites in both microscopic and mesoscopic scales.

摘要

在本工作中,我们使用密度泛函理论(DFT)计算的竞争性氢键和耗散粒子动力学(DPD)模拟的胶束结构信息,来揭示CO膨胀液体(CXL)辅助的自组装荧光复合材料(SAFCs)的自组装结构和发光机制。在此,SAFCs是通过二嵌段共聚物聚苯乙烯-聚(4-乙烯基吡啶)(PS-P4VP)共混物与染料分子4-(9-(2-(4-羟基苯基)乙炔基)-7,10-二苯基荧蒽-8-基)苯酚(4)在313.2K和不同压力下于CO膨胀的甲苯中自组装形成的。首先,通过DPD模拟,我们证明向甲苯中添加CO有利于疏溶剂性的P4VP相的膨胀和亲溶剂性的PS链的收缩,这随着压力升高促进了SAFCs从球形胶束(3.0MPa)通过蠕虫状加球形胶束(4.0 - 4.8MPa)到大型囊泡(6.0 - 6.5MPa)的连续形态转变。其次,DFT计算的竞争性氢键的结合能和红外光谱有助于我们阐明决定SAFCs荧光(FL)性能的主要氢键类型。此外,我们揭示了SAFCs的发光机制——涉及4和P4VP链的氢键的聚集程度和数量的压力可调变化。这项工作为在微观和介观尺度上对自组装聚合物复合材料的形态 - 性能控制提供了很好的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a6b/9900601/8fd99b18f5a6/d2ra07900c-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验