Suppr超能文献

算法复杂性和结构复杂性的近似值验证了认知行为实验结果。

Approximations of algorithmic and structural complexity validate cognitive-behavioral experimental results.

作者信息

Zenil Hector, Marshall James A R, Tegnér Jesper

机构信息

Machine Learning Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom.

Kellogg College, University of Oxford, Oxford, United Kingdom.

出版信息

Front Comput Neurosci. 2023 Jan 24;16:956074. doi: 10.3389/fncom.2022.956074. eCollection 2022.

Abstract

Being able to objectively characterize the intrinsic complexity of behavioral patterns resulting from human or animal decisions is fundamental for deconvolving cognition and designing autonomous artificial intelligence systems. Yet complexity is difficult in practice, particularly when strings are short. By numerically approximating algorithmic (Kolmogorov) complexity (), we establish an objective tool to characterize behavioral complexity. Next, we approximate structural (Bennett's Logical Depth) complexity () to assess the amount of computation required for generating a behavioral string. We apply our toolbox to three landmark studies of animal behavior of increasing sophistication and degree of environmental influence, including studies of foraging communication by ants, flight patterns of fruit flies, and tactical deception and competition (e.g., predator-prey) strategies. We find that ants harness the environmental condition in their internal decision process, modulating their behavioral complexity accordingly. Our analysis of flight (fruit flies) invalidated the common hypothesis that animals navigating in an environment devoid of stimuli adopt a random strategy. Fruit flies exposed to a featureless environment deviated the most from Levy flight, suggesting an algorithmic bias in their attempt to devise a useful (navigation) strategy. Similarly, a logical depth analysis of rats revealed that the structural complexity of the rat always ends up matching the structural complexity of the competitor, with the rats' behavior simulating algorithmic randomness. Finally, we discuss how experiments on how humans perceive randomness suggest the existence of an algorithmic bias in our reasoning and decision processes, in line with our analysis of the animal experiments. This contrasts with the view of the mind as performing faulty computations when presented with randomized items. In summary, our formal toolbox objectively characterizes external constraints on putative models of the "internal" decision process in humans and animals.

摘要

能够客观地表征人类或动物决策所产生行为模式的内在复杂性,对于剖析认知和设计自主人工智能系统至关重要。然而,在实践中衡量复杂性颇具难度,尤其是当序列较短时。通过对算法(柯尔莫哥洛夫)复杂性()进行数值近似,我们建立了一种表征行为复杂性的客观工具。接下来,我们对结构(贝内特逻辑深度)复杂性()进行近似,以评估生成行为序列所需的计算量。我们将我们的工具箱应用于三项具有里程碑意义的动物行为研究,这些研究的复杂性和环境影响程度不断增加,包括蚂蚁的觅食交流、果蝇的飞行模式以及战术欺骗和竞争(如捕食者 - 猎物)策略。我们发现蚂蚁在其内部决策过程中利用环境条件,相应地调节其行为复杂性。我们对果蝇飞行的分析推翻了一个常见假设,即在没有刺激的环境中导航的动物会采取随机策略。暴露于无特征环境中的果蝇与列维飞行的偏差最大,这表明它们在尝试设计有用(导航)策略时存在算法偏差。同样,对大鼠的逻辑深度分析表明,大鼠的结构复杂性最终总是与竞争者的结构复杂性相匹配,大鼠的行为模拟了算法随机性。最后,我们讨论关于人类如何感知随机性的实验如何表明在我们的推理和决策过程中存在算法偏差,这与我们对动物实验的分析一致。这与认为大脑在面对随机项目时执行错误计算的观点形成对比。总之,我们的形式化工具箱客观地表征了对人类和动物“内部”决策过程假定模型的外部约束。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5ce/9904762/77dfa1695f51/fncom-16-956074-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验