Carrell Alyssa A, Hicks Brittany B, Sidelinger Emilie, Johnston Eric R, Jawdy Sara S, Clark Miranda M, Klingeman Dawn M, Cregger Melissa A
Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.
Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI, United States.
Front Microbiol. 2023 Jan 25;13:1033631. doi: 10.3389/fmicb.2022.1033631. eCollection 2022.
Plants are colonized by numerous microorganisms serving important symbiotic functions that are vital to plant growth and success. Understanding and harnessing these interactions will be useful in both managed and natural ecosystems faced with global change, but it is still unclear how variation in environmental conditions and soils influence the trajectory of these interactions. In this study, we examine how nitrogen addition alters plant-fungal interactions within two species of - and . . In this experiment, we manipulated plant host, starting soil (native vs. away for each tree species), and nitrogen addition in a fully factorial replicated design. After ~10 weeks of growth, we destructively harvested the plants and characterized plant growth factors and the soil and root endosphere fungal communities using targeted amplicon sequencing of the ITS2 gene region. Overall, we found nitrogen addition altered plant growth factors, e.g., plant height, chlorophyll density, and plant N content. Interestingly, nitrogen addition resulted in a lower fungal alpha diversity in soils but not plant roots. Further, there was an interactive effect of tree species, soil origin, and nitrogen addition on soil fungal community composition. Starting soils collected from Oregon and West Virginia were dominated by the ectomycorrhizal fungi (55.8% relative abundance), but interestingly when . was grown in its native West Virginia soil, the roots selected for a high abundance of the arbuscular mycorrhizal fungi, . These results highlight the importance of soil origin and plant species on establishing plant-fungal interactions.
植物被众多具有重要共生功能的微生物所定殖,这些功能对植物的生长和成功至关重要。了解和利用这些相互作用对于面临全球变化的人工管理和自然生态系统都将有所帮助,但目前尚不清楚环境条件和土壤的变化如何影响这些相互作用的发展轨迹。在本研究中,我们研究了添加氮如何改变两种[植物名称]之间的植物 - 真菌相互作用。在这个实验中,我们以完全析因重复设计来操控植物宿主、起始土壤(每种树种的原生土壤与异地土壤)和氮添加量。生长约10周后,我们对植物进行破坏性收获,并使用ITS2基因区域的靶向扩增子测序来表征植物生长因子以及土壤和根内圈真菌群落。总体而言,我们发现添加氮改变了植物生长因子,例如株高、叶绿素密度和植物氮含量。有趣的是,添加氮导致土壤中真菌的α多样性降低,但植物根系中的真菌α多样性未受影响。此外,树种、土壤来源和氮添加对土壤真菌群落组成存在交互作用。从俄勒冈州和西弗吉尼亚州采集的起始土壤中,外生菌根真菌[真菌名称]占主导地位(相对丰度为55.8%),但有趣的是,当[植物名称]在其原生的西弗吉尼亚州土壤中生长时,根系中丛枝菌根真菌[真菌名称]的丰度较高。这些结果突出了土壤来源和植物物种在建立植物 - 真菌相互作用中的重要性。