Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN, 37831-6038, USA.
Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA.
Microbiome. 2019 May 18;7(1):76. doi: 10.1186/s40168-019-0668-8.
BACKGROUND: Plants have developed defense strategies for phytopathogen and herbivore protection via coordinated metabolic mechanisms. Low-molecular weight metabolites produced within plant tissues, such as salicylic acid, represent one such mechanism which likely mediates plant - microbe interactions above and below ground. Salicylic acid is a ubiquitous phytohormone at low levels in most plants, yet are concentrated defense compounds in Populus, likely acting as a selective filter for rhizosphere microbiomes. We propagated twelve Populus trichocarpa genotypes which varied an order of magnitude in salicylic acid (SA)-related secondary metabolites, in contrasting soils from two different origins. After four months of growth, plant properties (leaf growth, chlorophyll content, and net photosynthetic rate) and plant root metabolomics specifically targeting SA metabolites were measured via GC-MS. In addition, rhizosphere microbiome composition was measured via Illumina MiSeq sequencing of 16S and ITS2 rRNA-genes. RESULTS: Soil origin was the primary filter causing divergence in bacterial/archaeal and fungal communities with plant genotype secondarily influential. Both bacterial/archaeal and fungal evenness varied between soil origins and bacterial/archaeal diversity and evenness correlated with at least one SA metabolite (diversity: populin; evenness: total phenolics). The production of individual salicylic acid derivatives that varied by host genotype resulted in compositional differences for bacteria /archaea (tremuloidin) and fungi (salicylic acid) within one soil origin (Clatskanie) whereas soils from Corvallis did not illicit microbial compositional changes due to salicylic acid derivatives. Several dominant bacterial (e.g., Betaproteobacteria, Acidobacteria, Verrucomicrobia, Chloroflexi, Gemmatimonadete, Firmicutes) and one fungal phyla (Mortierellomycota) also correlated with specific SA secondary metabolites; bacterial phyla exhibited more negative interactions (declining abundance with increasing metabolite concentration) than positive interactions. CONCLUSIONS: These results indicate microbial communities diverge most among soil origin. However, within a soil origin, bacterial/archaeal communities are responsive to plant SA production within greenhouse-based rhizosphere microbiomes. Fungal microbiomes are impacted by root SA-metabolites, but overall to a lesser degree within this experimental context. These results suggest plant defense strategies, such as SA and its secondary metabolites, may partially drive patterns of both bacterial/archaeal and fungal taxa-specific colonization and assembly.
背景:植物通过协调代谢机制来保护植物病原体和食草动物。植物组织内产生的低分子量代谢物,如水杨酸,是一种可能介导地上和地下植物-微生物相互作用的机制。水杨酸在大多数植物中的含量很低,但在杨属植物中是浓缩的防御化合物,可能作为根际微生物组的选择性过滤器。我们繁殖了 12 种毛果杨基因型,它们在水杨酸(SA)相关次生代谢物方面差异一个数量级,在来自两个不同来源的对照土壤中。经过四个月的生长,通过 GC-MS 测量植物特性(叶生长、叶绿素含量和净光合速率)和专门针对 SA 代谢物的植物根代谢组学。此外,通过 Illumina MiSeq 测序 16S 和 ITS2 rRNA 基因测量根际微生物组组成。
结果:土壤起源是导致细菌/古菌和真菌群落差异的主要过滤器,植物基因型次之。细菌/古菌和真菌均匀度在土壤起源之间有所不同,细菌/古菌多样性和均匀度与至少一种 SA 代谢物相关(多样性:populin;均匀度:总酚类)。在一个土壤起源(克拉茨卡尼)中,由于宿主基因型的不同,个别水杨酸衍生物的产生导致了细菌/古菌(tremuloidin)和真菌(水杨酸)的组成差异,而科瓦利斯土壤中的水杨酸衍生物并没有引起微生物组成的变化。一些优势细菌(例如,Betaproteobacteria、Acidobacteria、Verrucomicrobia、Chloroflexi、Gemmatimonadete、Firmicutes)和一个真菌门(Mortierellomycota)也与特定的 SA 次生代谢物相关;细菌门表现出更多的负相互作用(随着代谢物浓度的增加而减少丰度)而不是正相互作用。
结论:这些结果表明微生物群落之间的差异最大的是土壤起源。然而,在一个土壤起源中,细菌/古菌群落对温室根际微生物群中植物 SA 的产生有反应。真菌微生物组受根 SA 代谢物的影响,但在这种实验背景下总体上影响较小。这些结果表明,植物防御策略,如 SA 及其次生代谢物,可能部分驱动地上和地下细菌/古菌和真菌分类群特异性定殖和组装的模式。
Appl Environ Microbiol. 2011-7-15
Appl Environ Microbiol. 2021-2-26
Microbiome. 2019-4-11
World J Microbiol Biotechnol. 2019-11-14
Plant Cell. 2025-8-4
Plant Biol (Stuttg). 2025-8