Suppr超能文献

用于加速基于过程的陆地生物地球化学循环计算的机器学习

Machine learning for accelerating process-based computation of land biogeochemical cycles.

作者信息

Sun Yan, Goll Daniel S, Huang Yuanyuan, Ciais Philippe, Wang Ying-Ping, Bastrikov Vladislav, Wang Yilong

机构信息

College of Marine Life Sciences, Ocean University of China, Qingdao, China.

Laboratoire des Sciences du Climat et de 1'Environnement, CEA-CNRS-UVSQ, Gif sur Yvette, France.

出版信息

Glob Chang Biol. 2023 Jun;29(11):3221-3234. doi: 10.1111/gcb.16623. Epub 2023 Feb 10.

Abstract

Global change ecology nowadays embraces ever-growing large observational datasets (big-data) and complex mathematical models that track hundreds of ecological processes (big-model). The rapid advancement of the big-data-big-model has reached its bottleneck: high computational requirements prevent further development of models that need to be integrated over long time-scales to simulate the distribution of ecosystems carbon and nutrient pools and fluxes. Here, we introduce a machine-learning acceleration (MLA) tool to tackle this grand challenge. We focus on the most resource-consuming step in terrestrial biosphere models (TBMs): the equilibration of biogeochemical cycles (spin-up), a prerequisite that can take up to 98% of the computational time. Through three members of the ORCHIDEE TBM family part of the IPSL Earth System Model, including versions that describe the complex interactions between nitrogen, phosphorus and carbon that do not have any analytical solution for the spin-up, we show that an unoptimized MLA reduced the computation demand by 77%-80% for global studies via interpolating the equilibrated state of biogeochemical variables for a subset of model pixels. Despite small biases in the MLA-derived equilibrium, the resulting impact on the predicted regional carbon balance over recent decades is minor. We expect a one-order of magnitude lower computation demand by optimizing the choices of machine learning algorithms, their settings, and balancing the trade-off between quality of MLA predictions and need for TBM simulations for training data generation and bias reduction. Our tool is agnostic to gridded models (beyond TBMs), compatible with existing spin-up acceleration procedures, and opens the door to a wide variety of future applications, with complex non-linear models benefit most from the computational efficiency.

摘要

当今,全球变化生态学涵盖了日益庞大的观测数据集(大数据)和追踪数百个生态过程的复杂数学模型(大模型)。大数据-大模型的快速发展已达到瓶颈:高计算需求阻碍了那些需要在长时间尺度上进行整合以模拟生态系统碳和养分库及通量分布的模型的进一步发展。在此,我们引入一种机器学习加速(MLA)工具来应对这一重大挑战。我们聚焦于陆地生物圈模型(TBMs)中最消耗资源的步骤:生物地球化学循环的平衡(启动),这一前提条件可能会占用高达98%的计算时间。通过IPSL地球系统模型的ORCHIDEE TBM家族的三个成员,包括描述氮、磷和碳之间复杂相互作用且启动过程没有任何解析解的版本,我们表明,对于全球研究而言,未优化的MLA通过对模型像素子集的生物地球化学变量平衡状态进行插值,将计算需求降低了77% - 80%。尽管MLA得出的平衡存在小偏差,但对近几十年来预测的区域碳平衡的影响较小。我们预计,通过优化机器学习算法的选择、其设置,并在MLA预测质量与TBM模拟对训练数据生成和偏差减少的需求之间进行权衡,可以将计算需求降低一个数量级。我们的工具与网格化模型(不限于TBMs)无关,与现有的启动加速程序兼容,并为未来的各种应用打开了大门,复杂的非线性模型将从计算效率中受益最多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验