Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
Korea Advanced Institute of Science and Technology (KAIST) Institute for Nanocentury, Yuseong-gu, Daejeon, 34141, South Korea.
Adv Mater. 2023 Apr;35(17):e2211497. doi: 10.1002/adma.202211497. Epub 2023 Mar 18.
Design of bifunctional multimetallic alloy catalysts, which are one of the most promising candidates for water splitting, is a significant issue for the efficient production of renewable energy. Owing to large dimensions of the components and composition of multimetallic alloys, as well as the trade-off behavior in terms of the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) overpotentials for bifunctional catalysts, it is difficult to search for high-performance bifunctional catalysts with multimetallic alloys using conventional trial-and-error experiments. Here, an optimal bifunctional catalyst for water splitting is obtained by combining Pareto active learning and experiments, where 110 experimental data points out of 77946 possible points lead to effective model development. The as-obtained bifunctional catalysts for HER and OER exhibit high performance, which is revealed by model development using Pareto active learning; among the catalysts, an optimal catalyst (Pt Pd Ru Cu ) exhibits a water splitting behavior of 1.56 V at a current density of 10 mA cm . This study opens avenues for the efficient exploration of multimetallic alloys, which can be applied in multifunctional catalysts as well as in other applications.
设计双功能多金属合金催化剂是高效生产可再生能源的一个重要问题,因为这些催化剂是水分解最有前途的候选者之一。由于组件的尺寸较大以及多金属合金的组成,以及双功能催化剂析氢反应 (HER) 和析氧反应 (OER) 过电位之间的权衡行为,因此很难使用传统的反复试验来寻找具有高性能的双功能多金属合金催化剂。在这里,通过结合 Pareto 主动学习和实验,获得了一种用于水分解的最优双功能催化剂,其中在 77946 个可能的点中有 110 个实验数据点导致了有效的模型开发。通过 Pareto 主动学习进行模型开发,所获得的 HER 和 OER 双功能催化剂表现出优异的性能;在这些催化剂中,最优催化剂 (PtPdRuCu) 在 10 mA cm 的电流密度下表现出 1.56 V 的水分解行为。本研究为多金属合金的高效探索开辟了道路,这些合金可应用于多功能催化剂以及其他应用中。