Xu Wenbin, Diesen Elias, He Tianwei, Reuter Karsten, Margraf Johannes T
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin D-14195, Germany.
Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
J Am Chem Soc. 2024 Mar 20;146(11):7698-7707. doi: 10.1021/jacs.3c14486. Epub 2024 Mar 11.
High entropy alloys (HEAs) are a highly promising class of materials for electrocatalysis as their unique active site distributions break the scaling relations that limit the activity of conventional transition metal catalysts. Existing Bayesian optimization (BO)-based virtual screening approaches focus on catalytic activity as the sole objective and correspondingly tend to identify promising materials that are unlikely to be entropically stabilized. Here, we overcome this limitation with a multiobjective BO framework for HEAs that simultaneously targets activity, cost-effectiveness, and entropic stabilization. With diversity-guided batch selection further boosting its data efficiency, the framework readily identifies numerous promising candidates for the oxygen reduction reaction that strike the balance between all three objectives in hitherto unchartered HEA design spaces comprising up to 10 elements.
高熵合金(HEAs)是一类极具前景的电催化材料,因为其独特的活性位点分布打破了限制传统过渡金属催化剂活性的比例关系。现有的基于贝叶斯优化(BO)的虚拟筛选方法将催化活性作为唯一目标,因此往往会识别出不太可能通过熵稳定的有前景材料。在此,我们通过一个针对高熵合金的多目标BO框架克服了这一限制,该框架同时以活性、成本效益和熵稳定为目标。通过多样性引导的批次选择进一步提高其数据效率,该框架能够轻松识别出众多有前景的氧还原反应候选材料,这些材料在包含多达10种元素的前所未有的高熵合金设计空间中实现了所有三个目标之间的平衡。