Suppr超能文献

通过多目标优化在广阔成分空间中发现高熵合金电催化剂。

Discovering High Entropy Alloy Electrocatalysts in Vast Composition Spaces with Multiobjective Optimization.

作者信息

Xu Wenbin, Diesen Elias, He Tianwei, Reuter Karsten, Margraf Johannes T

机构信息

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin D-14195, Germany.

Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

出版信息

J Am Chem Soc. 2024 Mar 20;146(11):7698-7707. doi: 10.1021/jacs.3c14486. Epub 2024 Mar 11.

Abstract

High entropy alloys (HEAs) are a highly promising class of materials for electrocatalysis as their unique active site distributions break the scaling relations that limit the activity of conventional transition metal catalysts. Existing Bayesian optimization (BO)-based virtual screening approaches focus on catalytic activity as the sole objective and correspondingly tend to identify promising materials that are unlikely to be entropically stabilized. Here, we overcome this limitation with a multiobjective BO framework for HEAs that simultaneously targets activity, cost-effectiveness, and entropic stabilization. With diversity-guided batch selection further boosting its data efficiency, the framework readily identifies numerous promising candidates for the oxygen reduction reaction that strike the balance between all three objectives in hitherto unchartered HEA design spaces comprising up to 10 elements.

摘要

高熵合金(HEAs)是一类极具前景的电催化材料,因为其独特的活性位点分布打破了限制传统过渡金属催化剂活性的比例关系。现有的基于贝叶斯优化(BO)的虚拟筛选方法将催化活性作为唯一目标,因此往往会识别出不太可能通过熵稳定的有前景材料。在此,我们通过一个针对高熵合金的多目标BO框架克服了这一限制,该框架同时以活性、成本效益和熵稳定为目标。通过多样性引导的批次选择进一步提高其数据效率,该框架能够轻松识别出众多有前景的氧还原反应候选材料,这些材料在包含多达10种元素的前所未有的高熵合金设计空间中实现了所有三个目标之间的平衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e23/10958507/62f3f36770ac/ja3c14486_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验