Su Yuming, Wang Xue, Ye Yuanxiang, Xie Yibo, Xu Yujing, Jiang Yibin, Wang Cheng
iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 P. R. China
Chem Sci. 2024 Jun 26;15(31):12200-12233. doi: 10.1039/d3sc07012c. eCollection 2024 Aug 7.
Recent advancements in artificial intelligence and automation are transforming catalyst discovery and design from traditional trial-and-error manual mode into intelligent, high-throughput digital methodologies. This transformation is driven by four key components, including high-throughput information extraction, automated robotic experimentation, real-time feedback for iterative optimization, and interpretable machine learning for generating new knowledge. These innovations have given rise to the development of self-driving labs and significantly accelerated materials research. Over the past two years, the emergence of large language models (LLMs) has added a new dimension to this field, providing unprecedented flexibility in information integration, decision-making, and interacting with human researchers. This review explores how LLMs are reshaping catalyst design, heralding a revolutionary change in the fields.
人工智能和自动化领域的最新进展正在将催化剂的发现和设计从传统的试错手动模式转变为智能、高通量的数字方法。这种转变由四个关键要素驱动,包括高通量信息提取、自动化机器人实验、用于迭代优化的实时反馈以及用于生成新知识的可解释机器学习。这些创新推动了自动驾驶实验室的发展,并显著加速了材料研究。在过去两年中,大语言模型(LLMs)的出现为该领域增添了新的维度,在信息整合、决策以及与人类研究人员互动方面提供了前所未有的灵活性。本综述探讨了大语言模型如何重塑催化剂设计,预示着该领域的一场变革。