Suppr超能文献

在一项催化研究中,由大语言模型增强的自动化和机器学习。

Automation and machine learning augmented by large language models in a catalysis study.

作者信息

Su Yuming, Wang Xue, Ye Yuanxiang, Xie Yibo, Xu Yujing, Jiang Yibin, Wang Cheng

机构信息

iChem, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China

Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Xiamen 361005 P. R. China

出版信息

Chem Sci. 2024 Jun 26;15(31):12200-12233. doi: 10.1039/d3sc07012c. eCollection 2024 Aug 7.

Abstract

Recent advancements in artificial intelligence and automation are transforming catalyst discovery and design from traditional trial-and-error manual mode into intelligent, high-throughput digital methodologies. This transformation is driven by four key components, including high-throughput information extraction, automated robotic experimentation, real-time feedback for iterative optimization, and interpretable machine learning for generating new knowledge. These innovations have given rise to the development of self-driving labs and significantly accelerated materials research. Over the past two years, the emergence of large language models (LLMs) has added a new dimension to this field, providing unprecedented flexibility in information integration, decision-making, and interacting with human researchers. This review explores how LLMs are reshaping catalyst design, heralding a revolutionary change in the fields.

摘要

人工智能和自动化领域的最新进展正在将催化剂的发现和设计从传统的试错手动模式转变为智能、高通量的数字方法。这种转变由四个关键要素驱动,包括高通量信息提取、自动化机器人实验、用于迭代优化的实时反馈以及用于生成新知识的可解释机器学习。这些创新推动了自动驾驶实验室的发展,并显著加速了材料研究。在过去两年中,大语言模型(LLMs)的出现为该领域增添了新的维度,在信息整合、决策以及与人类研究人员互动方面提供了前所未有的灵活性。本综述探讨了大语言模型如何重塑催化剂设计,预示着该领域的一场变革。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ed3/11304797/ff1b0d3f0263/d3sc07012c-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验