Suppr超能文献

酿酒酵母α-半乳糖苷酶的结构分析及其与天然底物的复合物揭示了 GH27 糖苷酶对底物特异性的新认识。

Structural analysis of Saccharomyces cerevisiae alpha-galactosidase and its complexes with natural substrates reveals new insights into substrate specificity of GH27 glycosidases.

机构信息

Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071-A Coruña, Spain.

出版信息

J Biol Chem. 2010 Sep 3;285(36):28020-33. doi: 10.1074/jbc.M110.144584. Epub 2010 Jun 30.

Abstract

Alpha-galactosidases catalyze the hydrolysis of terminal alpha-1,6-galactosyl units from galacto-oligosaccharides and polymeric galactomannans. The crystal structures of tetrameric Saccharomyces cerevisiae alpha-galactosidase and its complexes with the substrates melibiose and raffinose have been determined to 1.95, 2.40, and 2.70 A resolution. The monomer folds into a catalytic (alpha/beta)(8) barrel and a C-terminal beta-sandwich domain with unassigned function. This pattern is conserved with other family 27 glycosidases, but this enzyme presents a unique 45-residue insertion in the beta-sandwich domain that folds over the barrel protecting it from the solvent and likely explaining its high stability. The structure of the complexes and the mutational analysis show that oligomerization is a key factor in substrate binding, as the substrates are located in a deep cavity making direct interactions with the adjacent subunit. Furthermore, docking analysis suggests that the supplementary domain could be involved in binding sugar units distal from the scissile bond, therefore ascribing a role in fine-tuning substrate specificity to this domain. It may also have a role in promoting association with the polymeric substrate because of the ordered arrangement that the four domains present in one face of the tetramer. Our analysis extends to other family 27 glycosidases, where some traits regarding specificity and oligomerization can be formulated on the basis of their sequence and the structures available. These results improve our knowledge on the activity of this important family of enzymes and give a deeper insight into the structural features that rule modularity and protein-carbohydrate interactions.

摘要

α-半乳糖苷酶催化从半乳糖寡糖和聚合半乳甘露聚糖中水解末端α-1,6-半乳糖基单元。已确定四聚体酿酒酵母α-半乳糖苷酶及其与底物蜜二糖和棉子糖复合物的晶体结构分别为 1.95、2.40 和 2.70Å分辨率。单体折叠成催化(α/β)(8)桶和无功能的 C 末端β-夹心结构域。这种模式与其他家族 27 糖苷酶保守,但该酶在β-夹心结构域中具有独特的 45 个残基插入,该插入折叠在桶上,使其免受溶剂的影响,这可能解释了其高稳定性。复合物的结构和突变分析表明,寡聚化是底物结合的关键因素,因为底物位于深腔中,与相邻亚基直接相互作用。此外,对接分析表明,补充结构域可能参与与切口键远端糖单位的结合,因此将该结构域的功能归因于精细调节底物特异性。由于四聚体的一个面上四个结构域的有序排列,它也可能在促进与聚合底物的缔合上发挥作用。我们的分析扩展到其他家族 27 糖苷酶,根据它们的序列和可用结构,可以制定有关特异性和寡聚化的一些特征。这些结果提高了我们对这一重要酶家族活性的认识,并深入了解了控制模块化和蛋白质-碳水化合物相互作用的结构特征。

相似文献

2
Crystal Structure of α-Galactosidase from : Insight into Hexamer Assembly and Substrate Specificity.
J Agric Food Chem. 2020 Jun 3;68(22):6161-6169. doi: 10.1021/acs.jafc.0c00871. Epub 2020 May 20.
3
Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding.
J Mol Biol. 2011 Sep 23;412(3):466-80. doi: 10.1016/j.jmb.2011.07.057. Epub 2011 Jul 30.
5
Structural insight into the hydrolase and synthase activities of an alkaline α-galactosidase from Arabidopsis from complexes with substrate/product.
Acta Crystallogr D Struct Biol. 2023 Feb 1;79(Pt 2):154-167. doi: 10.1107/S2059798323000037. Epub 2023 Jan 20.
7
Crystal structure of rice alpha-galactosidase complexed with D-galactose.
J Biol Chem. 2003 May 30;278(22):20313-8. doi: 10.1074/jbc.M302292200. Epub 2003 Mar 25.
8
Insights into the substrate specificity and synergy with mannanase of family 27 α-galactosidases from Neosartorya fischeri P1.
Appl Microbiol Biotechnol. 2015 Feb;99(3):1261-72. doi: 10.1007/s00253-014-6269-3. Epub 2014 Dec 10.
10
The tetramer structure of the glycoside hydrolase family 27 alpha-galactosidase I from Umbelopsis vinacea.
Biosci Biotechnol Biochem. 2009 Oct;73(10):2360-4. doi: 10.1271/bbb.90604. Epub 2009 Oct 7.

引用本文的文献

1
Selective Hydrolysis of Heterooligosaccharides by Poly(acrylate) Gel Catalysts.
ACS Catal. 2024 Oct 30;14(22):16723-16730. doi: 10.1021/acscatal.4c04697. eCollection 2024 Nov 15.
2
Structural insight into the hydrolase and synthase activities of an alkaline α-galactosidase from Arabidopsis from complexes with substrate/product.
Acta Crystallogr D Struct Biol. 2023 Feb 1;79(Pt 2):154-167. doi: 10.1107/S2059798323000037. Epub 2023 Jan 20.
4
α-Galactosidase and Sucrose-Kinase Relationships in a Bi-functional AgaSK Enzyme Produced by the Human Gut Symbiont E1.
Front Microbiol. 2020 Nov 12;11:579521. doi: 10.3389/fmicb.2020.579521. eCollection 2020.
6
Bioconversion of Beet Molasses to Alpha-Galactosidase and Ethanol.
Front Microbiol. 2019 Mar 7;10:405. doi: 10.3389/fmicb.2019.00405. eCollection 2019.
7
Valuation of agro-industrial wastes as substrates for heterologous production of α-galactosidase.
Microb Cell Fact. 2018 Sep 3;17(1):137. doi: 10.1186/s12934-018-0988-6.
8
A β-mannan utilization locus in Bacteroides ovatus involves a GH36 α-galactosidase active on galactomannans.
FEBS Lett. 2016 Jul;590(14):2106-18. doi: 10.1002/1873-3468.12250. Epub 2016 Jun 28.
9
α-Glucosidases and α-1,4-glucan lyases: structures, functions, and physiological actions.
Cell Mol Life Sci. 2016 Jul;73(14):2727-51. doi: 10.1007/s00018-016-2247-5. Epub 2016 Apr 30.

本文引用的文献

1
Crystallization and preliminary X-ray diffraction data of alpha-galactosidase from Saccharomyces cerevisiae.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Jan 1;66(Pt 1):44-7. doi: 10.1107/S1744309109047794. Epub 2009 Dec 25.
2
MolProbity: all-atom structure validation for macromolecular crystallography.
Acta Crystallogr D Biol Crystallogr. 2010 Jan;66(Pt 1):12-21. doi: 10.1107/S0907444909042073. Epub 2009 Dec 21.
3
Catalytic mechanism of human alpha-galactosidase.
J Biol Chem. 2010 Feb 5;285(6):3625-3632. doi: 10.1074/jbc.M109.060145. Epub 2009 Nov 25.
4
The 1.9 a structure of human alpha-N-acetylgalactosaminidase: The molecular basis of Schindler and Kanzaki diseases.
J Mol Biol. 2009 Oct 23;393(2):435-47. doi: 10.1016/j.jmb.2009.08.021. Epub 2009 Aug 14.
5
The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.
Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8. doi: 10.1093/nar/gkn663. Epub 2008 Oct 5.
6
PCR-based strategy for construction of multi-site-saturation mutagenic expression library.
J Microbiol Methods. 2007 Dec;71(3):225-30. doi: 10.1016/j.mimet.2007.09.001. Epub 2007 Sep 11.
7
Clustal W and Clustal X version 2.0.
Bioinformatics. 2007 Nov 1;23(21):2947-8. doi: 10.1093/bioinformatics/btm404. Epub 2007 Sep 10.
8
Inference of macromolecular assemblies from crystalline state.
J Mol Biol. 2007 Sep 21;372(3):774-97. doi: 10.1016/j.jmb.2007.05.022. Epub 2007 May 13.
9
Crystallization of protein-ligand complexes.
Acta Crystallogr D Biol Crystallogr. 2007 Jan;63(Pt 1):72-9. doi: 10.1107/S0907444906047020. Epub 2006 Dec 13.
10
The effect of oral alpha-galactosidase on intestinal gas production and gas-related symptoms.
Dig Dis Sci. 2007 Jan;52(1):78-83. doi: 10.1007/s10620-006-9296-9. Epub 2006 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验