Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, s/n 15071-A Coruña, Spain.
J Biol Chem. 2010 Sep 3;285(36):28020-33. doi: 10.1074/jbc.M110.144584. Epub 2010 Jun 30.
Alpha-galactosidases catalyze the hydrolysis of terminal alpha-1,6-galactosyl units from galacto-oligosaccharides and polymeric galactomannans. The crystal structures of tetrameric Saccharomyces cerevisiae alpha-galactosidase and its complexes with the substrates melibiose and raffinose have been determined to 1.95, 2.40, and 2.70 A resolution. The monomer folds into a catalytic (alpha/beta)(8) barrel and a C-terminal beta-sandwich domain with unassigned function. This pattern is conserved with other family 27 glycosidases, but this enzyme presents a unique 45-residue insertion in the beta-sandwich domain that folds over the barrel protecting it from the solvent and likely explaining its high stability. The structure of the complexes and the mutational analysis show that oligomerization is a key factor in substrate binding, as the substrates are located in a deep cavity making direct interactions with the adjacent subunit. Furthermore, docking analysis suggests that the supplementary domain could be involved in binding sugar units distal from the scissile bond, therefore ascribing a role in fine-tuning substrate specificity to this domain. It may also have a role in promoting association with the polymeric substrate because of the ordered arrangement that the four domains present in one face of the tetramer. Our analysis extends to other family 27 glycosidases, where some traits regarding specificity and oligomerization can be formulated on the basis of their sequence and the structures available. These results improve our knowledge on the activity of this important family of enzymes and give a deeper insight into the structural features that rule modularity and protein-carbohydrate interactions.
α-半乳糖苷酶催化从半乳糖寡糖和聚合半乳甘露聚糖中水解末端α-1,6-半乳糖基单元。已确定四聚体酿酒酵母α-半乳糖苷酶及其与底物蜜二糖和棉子糖复合物的晶体结构分别为 1.95、2.40 和 2.70Å分辨率。单体折叠成催化(α/β)(8)桶和无功能的 C 末端β-夹心结构域。这种模式与其他家族 27 糖苷酶保守,但该酶在β-夹心结构域中具有独特的 45 个残基插入,该插入折叠在桶上,使其免受溶剂的影响,这可能解释了其高稳定性。复合物的结构和突变分析表明,寡聚化是底物结合的关键因素,因为底物位于深腔中,与相邻亚基直接相互作用。此外,对接分析表明,补充结构域可能参与与切口键远端糖单位的结合,因此将该结构域的功能归因于精细调节底物特异性。由于四聚体的一个面上四个结构域的有序排列,它也可能在促进与聚合底物的缔合上发挥作用。我们的分析扩展到其他家族 27 糖苷酶,根据它们的序列和可用结构,可以制定有关特异性和寡聚化的一些特征。这些结果提高了我们对这一重要酶家族活性的认识,并深入了解了控制模块化和蛋白质-碳水化合物相互作用的结构特征。
J Agric Food Chem. 2020-6-3
Acta Crystallogr D Struct Biol. 2023-2-1
J Biol Chem. 2003-5-30
Appl Microbiol Biotechnol. 2014-12-10
Biosci Biotechnol Biochem. 2009-10
ACS Catal. 2024-10-30
Acta Crystallogr D Struct Biol. 2023-2-1
Front Microbiol. 2019-3-7
Microb Cell Fact. 2018-9-3
Cell Mol Life Sci. 2016-7
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010-1-1
Acta Crystallogr D Biol Crystallogr. 2010-1
J Biol Chem. 2009-11-25
Nucleic Acids Res. 2009-1
J Microbiol Methods. 2007-12
Bioinformatics. 2007-11-1
J Mol Biol. 2007-9-21
Acta Crystallogr D Biol Crystallogr. 2007-1