Timoshenko Janis, Haase Felix T, Saddeler Sascha, Rüscher Martina, Jeon Hyo Sang, Herzog Antonia, Hejral Uta, Bergmann Arno, Schulz Stephan, Roldan Cuenya Beatriz
Department of Interface Science, Fritz-Haber Institute of the Max-Planck Society, 14195 Berlin, Germany.
Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, 45117 Essen, Germany.
J Am Chem Soc. 2023 Feb 22;145(7):4065-4080. doi: 10.1021/jacs.2c11824. Epub 2023 Feb 10.
Bimetallic transition-metal oxides, such as spinel-like CoFeO materials, are known as attractive catalysts for the oxygen evolution reaction (OER) in alkaline electrolytes. Nonetheless, unveiling the real active species and active states in these catalysts remains a challenge. The coexistence of metal ions in different chemical states and in different chemical environments, including disordered X-ray amorphous phases that all evolve under reaction conditions, hinders the application of common operando techniques. Here, we address this issue by relying on operando quick X-ray absorption fine structure spectroscopy, coupled with unsupervised and supervised machine learning methods. We use principal component analysis to understand the subtle changes in the X-ray absorption near-edge structure spectra and develop an artificial neural network to decipher the extended X-ray absorption fine structure spectra. This allows us to separately track the evolution of tetrahedrally and octahedrally coordinated species and to disentangle the chemical changes and several phase transitions taking place in CoFeO catalysts and on their active surface, related to the conversion of disordered oxides into spinel-like structures, transformation of spinels into active oxyhydroxides, and changes in the degree of spinel inversion in the course of the activation treatment and under OER conditions. By correlating the revealed structural changes with the distinct catalytic activity for a series of CoFeO samples, we elucidate the active species and OER mechanism.
双金属过渡金属氧化物,如类尖晶石CoFeO材料,被认为是碱性电解质中析氧反应(OER)的有吸引力的催化剂。尽管如此,揭示这些催化剂中的真正活性物种和活性状态仍然是一个挑战。不同化学状态和不同化学环境中的金属离子共存,包括在反应条件下都会发生变化的无序X射线非晶相,这阻碍了常用的原位技术的应用。在这里,我们依靠原位快速X射线吸收精细结构光谱,结合无监督和有监督的机器学习方法来解决这个问题。我们使用主成分分析来理解X射线吸收近边结构光谱中的细微变化,并开发一个人工神经网络来解读扩展X射线吸收精细结构光谱。这使我们能够分别追踪四面体和八面体配位物种的演变,并解开CoFeO催化剂及其活性表面发生的化学变化和几个相变,这些变化与无序氧化物向类尖晶石结构的转变、尖晶石向活性羟基氧化物的转变以及在活化处理过程中和OER条件下尖晶石反转程度的变化有关。通过将揭示的结构变化与一系列CoFeO样品的不同催化活性相关联,我们阐明了活性物种和OER机制。