Suppr超能文献

酸性介质中析氧反应过程中氧化钌的原位结构

On the Operando Structure of Ruthenium Oxides during the Oxygen Evolution Reaction in Acidic Media.

作者信息

Deka Nipon, Jones Travis E, Falling Lorenz J, Sandoval-Diaz Luis-Ernesto, Lunkenbein Thomas, Velasco-Velez Juan-Jesus, Chan Ting-Shan, Chuang Cheng-Hao, Knop-Gericke Axel, Mom Rik V

机构信息

Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands.

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States.

出版信息

ACS Catal. 2023 May 19;13(11):7488-7498. doi: 10.1021/acscatal.3c01607. eCollection 2023 Jun 2.

Abstract

In the search for rational design strategies for oxygen evolution reaction (OER) catalysts, linking the catalyst structure to activity and stability is key. However, highly active catalysts such as IrO and RuO undergo structural changes under OER conditions, and hence, structure-activity-stability relationships need to take into account the operando structure of the catalyst. Under the highly anodic conditions of the oxygen evolution reaction (OER), electrocatalysts are often converted into an active form. Here, we studied this activation for amorphous and crystalline ruthenium oxide using X-ray absorption spectroscopy (XAS) and electrochemical scanning electron microscopy (EC-SEM). We tracked the evolution of surface oxygen species in ruthenium oxides while in parallel mapping the oxidation state of the Ru atoms to draw a complete picture of the oxidation events that lead to the OER active structure. Our data show that a large fraction of the OH groups in the oxide are deprotonated under OER conditions, leading to a highly oxidized active material. The oxidation is centered not only on the Ru atoms but also on the oxygen lattice. This oxygen lattice activation is particularly strong for amorphous RuO. We propose that this property is key for the high activity and low stability observed for amorphous ruthenium oxide.

摘要

在寻找析氧反应(OER)催化剂的合理设计策略时,将催化剂结构与活性和稳定性联系起来是关键。然而,诸如IrO和RuO等高活性催化剂在OER条件下会发生结构变化,因此,结构-活性-稳定性关系需要考虑催化剂的原位结构。在析氧反应(OER)的高阳极条件下,电催化剂通常会转变为活性形式。在此,我们使用X射线吸收光谱(XAS)和电化学扫描电子显微镜(EC-SEM)研究了非晶态和晶态氧化钌的这种活化过程。我们追踪了氧化钌中表面氧物种的演变情况,并同时绘制Ru原子的氧化态图,以全面了解导致OER活性结构的氧化事件。我们的数据表明,在OER条件下,氧化物中的大部分OH基团会去质子化,从而形成高度氧化的活性材料。氧化不仅集中在Ru原子上,还集中在氧晶格上。这种氧晶格活化对于非晶态RuO尤为强烈。我们认为,这一特性是观察到非晶态氧化钌具有高活性和低稳定性的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa16/10242682/83a65bcaf399/cs3c01607_0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验