阳离子对电催化质子扩散动力学的抑制机制。
Mechanism of Cations Suppressing Proton Diffusion Kinetics for Electrocatalysis.
机构信息
State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.
School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, P. R. China.
出版信息
Angew Chem Int Ed Engl. 2023 Mar 27;62(14):e202218669. doi: 10.1002/anie.202218669. Epub 2023 Feb 28.
Proton transfer is crucial for electrocatalysis. Accumulating cations at electrochemical interfaces can alter the proton transfer rate and then tune electrocatalytic performance. However, the mechanism for regulating proton transfer remains ambiguous. Here, we quantify the cation effect on proton diffusion in solution by hydrogen evolution on microelectrodes, revealing the rate can be suppressed by more than 10 times. Different from the prevalent opinions that proton transport is slowed down by modified electric field, we found water structure imposes a more evident effect on kinetics. FTIR test and path integral molecular dynamics simulation indicate that proton prefers to wander within the hydration shell of cations rather than to hop rapidly along water wires. Low connectivity of water networks disrupted by cations corrupts the fast-moving path in bulk water. This study highlights the promising way for regulating proton kinetics via a modified water structure.
质子传递对于电催化至关重要。在电化学界面上积累阳离子会改变质子传递速率,从而调节电催化性能。然而,调节质子传递的机制仍不清楚。在这里,我们通过微电极上的析氢反应来量化阳离子对溶液中质子扩散的影响,结果表明质子扩散速率可被抑制 10 多倍。与普遍认为的质子传输是由于改性电场而减缓的观点不同,我们发现水结构对动力学有更明显的影响。傅里叶变换红外(FTIR)测试和路径积分分子动力学模拟表明,质子更倾向于在阳离子的水化壳内漫游,而不是沿着水分子快速跳跃。阳离子破坏了水网络的低连接性,破坏了在体相水中快速移动的路径。这项研究强调了通过改性水结构来调节质子动力学的有前途的方法。