Cai Menglu, Dai Siyun, Xuan Jun, Mo Yiming
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
Department of Chemistry, Zhejiang University, Hangzhou, China.
Nat Commun. 2025 Apr 6;16(1):3285. doi: 10.1038/s41467-025-58558-z.
Cyclic carbonates, such as ethylene carbonate, are crucial in various applications, including lithium-ion batteries and polymers. Traditional production routes for ethylene carbonate rely on high-temperature thermocatalytic processes that use fossil-fuel-derived epoxides and carbon dioxide (CO). Herein, we report a bromide-mediated membraneless electrosynthesis strategy for direction conversion of ethylene and CO into ethylene carbonate. This method leverages electrolyte engineering to modulate the kinetics of solution chemistry to proceed at rates that match the high-current bromide electrooxidation, and cathode protection with chromium hydroxide film to suppress the parasitic bromine reduction reaction. These enable the system to operate at 10-250 mA/cm current density with 47-78% Faraday efficiency towards ethylene carbonate. The system's practicality is underscored by achieving an ethylene carbonate product concentration of 0.86 M and maintaining stability for over 500 hours. Furthermore, we demonstrate the integration of this process with CO electroreduction to ethylene, enabling a cascade ethylene carbonate electrosynthesis using only CO and water as feedstocks. A comprehensive techno-economic analysis confirms the strong economic potential of this method for future applications.
环状碳酸酯,如碳酸乙烯酯,在包括锂离子电池和聚合物在内的各种应用中至关重要。传统的碳酸乙烯酯生产路线依赖于高温热催化过程,该过程使用化石燃料衍生的环氧化物和二氧化碳(CO)。在此,我们报道了一种溴化物介导的无膜电合成策略,用于将乙烯和CO直接转化为碳酸乙烯酯。该方法利用电解质工程来调节溶液化学动力学,使其以与高电流溴化物电氧化相匹配的速率进行,并使用氢氧化铬膜进行阴极保护以抑制寄生的溴还原反应。这些使得该系统能够在10 - 250 mA/cm²的电流密度下运行,对碳酸乙烯酯的法拉第效率为47 - 78%。通过实现0.86 M的碳酸乙烯酯产物浓度并保持超过500小时的稳定性,突出了该系统的实用性。此外,我们展示了该过程与CO电还原为乙烯的集成,实现了仅使用CO和水作为原料的级联碳酸乙烯酯电合成。全面的技术经济分析证实了该方法在未来应用中的强大经济潜力。